Компьютерная графика

Содержание

- ◆ Компьютерная графика
- ◆ Области применения компьютерной графики
- Виды компьютерной графики
- ◆ Сравнительная характеристика растровой и векторной графики
- **Ф** Цветовые модели и их виды

Компьютерная графика

❖ Компьютерная графика — это наука, предметом изучения которой является создание, хранение и обработка моделей и их изображений с помощью ЭВМ, т.е. это раздел информатики, проблемами который занимается изображений получения различных (рисунков, чертежей, мультипликации) на компьютере.

Содержание

- Научная графика дает возможность проводить вычислительные эксперименты с наглядным представлением их результатов.
- ◆ Деловая графика область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений.

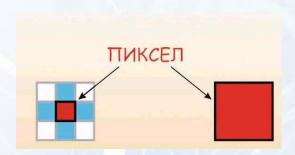
- Конструкторская графика используется в работе инженеров-конструкторов, архитекторов, изобретателей новой техники.
- ❖ Иллюстративная графика это произвольное рисование и черчение на экране компьютера.

 Художественная и рекламная графика ставшая популярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации. Получение рисунков трехмерных объектов, их повороты, приближения, удаления, деформации связано с большим объемом вычислений.

Компьютерная анимация ЭТО получение движущихся изображений на экране дисплея. Художник создает на экране начальное и конечное положения движущихся объектов, промежуточные состояния рассчитывает и изображает компьютер, выполняя расчеты, опирающиеся математическое описание на данного вида движения.

 Мультимедиа – это объединение высококачественного изображения на экране компьютера со звуковым сопровождением.

Наибольшее распространение системы мультимедиа получили в области обучения, рекламы, развлечений.


Содержание


Виды компьютерной графики

Растровая графика
 Векторная графика
 Фрактальная графика

Содержание

- Растровая графика принцип хранения и обработки некоторого изображения в виде матрицы точек.
 - Растровое изображение составляется из мельчайших точек (пикселей) цветных квадратиков одинакового размера. Растровое изображение подобно мозаике когда приближаете (увеличиваете) его, то видите отдельные пиксели, а если удаляете (уменьшаете), пиксели сливаются.

- Тлубина цвета сколько битов отведено на хранение цвета каждой точки:
 - в черно-белом 1 бит
 - в полутоновом 8 бит
 - в цветном 24 (32) бита на каждую точку.

Размер файла зависит от параметров точек и их количества:

Параметры

от глубины цвета точек

от размера изображения (в большем размере вмещается больше точек)

от разрешения изображения (при большем разрешении на единицу площади изображения приходится больше точек)

Программы для работы с растровой графикой:

- Paint
- Microsoft Photo Editor
- Adobe PhotoShop
- Fractal Design Painter
- Micrografx Picture Publisher

Применение

Для обработки изображений, требующей высокой точности передачи оттенков цветов и плавного перетекания полутонов. Например, для:

- ретуширования, реставрирования фотографий;
- создания и обработки фотомонтажа, коллажей;
- применения к изображениям различных спецэффектов;
- после сканирования изображения получаются в растровом виде.

Виды компьютерной графики

- Векторная графика способ представления объектов и изображений в компьютерной графике, основанный на использовании геометрических примитивов, таких как точки, линии и многоугольники.
- Линия элементарный объект векторной графики.

Свойства линии: форма (прямая, кривая), толщина, цвет, начертание (сплошная, пунктирная).

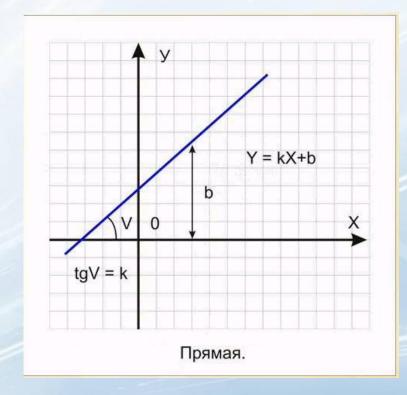
Компьютер хранит элементы изображения (линии, кривые, фигуры) в виде математических формул.

При открытии файла программа прорисовывает элементы изображения по их математическим формулам (уравнениям).

Точка

объект на плоскости представляется двумя числами (x, y), указывающими его положение относительно начала координат

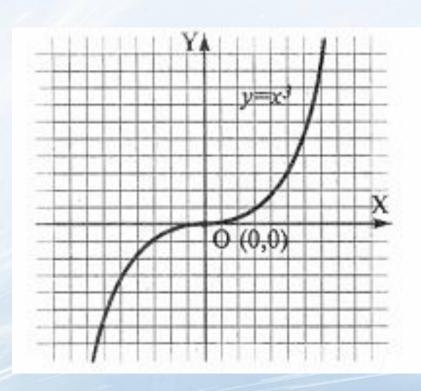
Прямая линия


ей соответствует уравнение *y=kx+b* Для задания прямой достаточно двух параметров *k* и *b*

Отрезок прямой

для описания требует еще двух параметров – например, координат x1 и x2 начала и конца отрезка

Кривая второго порядка


параболы, гиперболы, эллипсы, окружности. Кривая второго порядка не имеет *точек перегиба.* Формула кривой второго порядка:

x2+a1y2+a2xy+a3x+a4y+a5=0

Кривая третьего порядка


Имеет точку перегиба.
Например, график функции $y = x^3$ имеет точку перегиба в начале координат. Кривые третьего порядка являются основой отображения природных объектов в векторной графике. Уравнение кривой третьего порядка:

x3+a1y3+a2x2y+a3xy2+a4x2+a5y2+a6xy+a7x+a8y+a9=0

Кривая Безье

упрощенный вид кривых третьего порядка основан на использовании пары касательных, проведенных к отрезку линии в ее окончаниях. Отрезки кривых Безье описываются восемью параметрами. На форму линии влияет угол наклона касательной и длина ее отрезка.

Программы для работы с векторной графикой:

- Corel Draw;
- Adobe Illustrator;
- Fractal Design Expression;
- Macromedia Freehand;
- AutoCAD

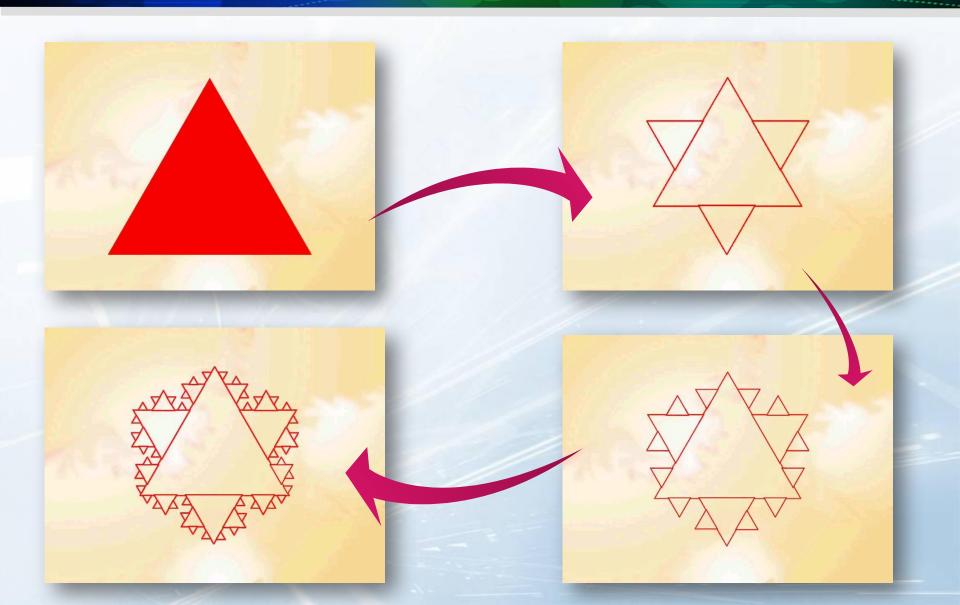
Применение

- для создания вывесок, этикеток, логотипов, эмблем и пр. символьных изображений;
- для построения чертежей, диаграмм, графиков, схем;
- для рисованных изображений с четкими контурами, не обладающих большим спектром оттенков цветов;
- для моделирования объектов изображения;
- для создания 3-х мерных изображений

Сравнительная характеристика растровой и векторной графики

Критерий сравнения	Растровая графика	Векторная графика
Способ представления	Растровое изображение	Векторное изображение
изображения	строится из множества	описывается в виде
	пикселей	последовательности команд
Представление	Растровые рисунки	Векторная графика не
объектов реального	эффективно используются для	позволяет получать
мира	представления реальных	изображения
	образов	фотографического качества
Качество	При масштабировании и	Векторные изображения
редактирования	вращении растровых картинок	могут быть легко преобразо-
изображения	возникают искажения	ваны без потери качества
Особенности печати	Растровые рисунки могут быть	Векторные рисунки иногда
изображения	легко напечатаны на принтерах	не печатаются или выглядят
		на бумаге не так, как
		хотелось бы

Содержание


Фрактальная графика

- Фрактальная графика одна из быстроразвивающихся и перспективных видов компьютерной графики. Математическая основа - фрактальная геометрия.
- Фрактал структура, состоящая из частей, подобных целому. Одним из основных свойств является самоподобие. Фрактус – состоящий из фрагментов)

Фрактальная графика

Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является математическая формула, то есть объекты в памяти компьютера не хранятся и изображение строится по уравнениям.

Фрактальная фигура

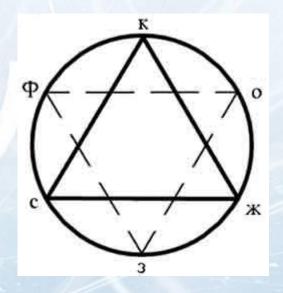
Фрактальная графика

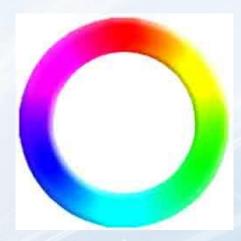
Программы для работы с фрактальной графикой:

• Фрактальная вселенная 4.0 fracplanet

Фрактальная графика

Применение


- Математики,
- Художники


Виды компьютерной графики

Цветовые модели и их виды

Большой круг Освальда

« Круг Гете

Цветовые модели и их виды

- **↓ Цветовые** модели (цветовое пространство), это способ описания цвета с помощью количественных характеристик.
- Основные цветовые модели:
 - RGB;
 - CMY (Cyan Magenta Yellow);
 - CMYK (Cyan Magenta Yellow Key, причем Key означает черный цвет);
 - · HSB;
 - Lab

Цветовые модели и их виды

По принципу действия перечисленные цветовые модели можно условно разделить на три класса:

- аддитивные (RGB), основанные на сложении цветов;
- субтрактивные (СМҮ, СМҮК), основу которых составляет операция вычитания цветов (субтрактивный синтез);
- перцепционные (HSB, HLS, LAB, YCC), базирующиеся на восприятии.