ТЕМА УРОКА:

Презентацию подготовила преподаватель информатики и ИКТ ОГБОУ НПО ПЛ № 3 г. Иваново Меркулова Татьяна Дмитриевна

ТЕМА УРОКА:

Можете ли вы полностью ответить на следующие вопросы:

- Знаете ли вы, что такое информация?
- Какие виды информации способен обрабатывать компьютер?
- Каким образом кодируется информация в компьютере?
- Известно ли вам, что такое система счисления? Какие бывают системы счисления?
- Умеете ли вы производить перевод чисел из одной системы счисления в другую?

ЦЕЛИ УРОКА:

- Рассмотреть, что такое система счисления, виды систем счисления.
- Научиться производить перевод чисел из одной системы счисления в другую.

КРОССВОРД- ПОВТОРЕНИЕ

Вопросы:

- 1. Первичное неопределяемое понятие информатики и новые сведения для человека.
- 2. Информация в виде цифр и знаков, обозначающих математические действия.
- 3. Минимальная единица измерения количества информации.

- 4. Информация, передаваемая в виде символов, сведения из книги, газеты, журнала и т. д.
- 5. Примеры этого вида информации рисунок, чертеж в виде статических изображений.
- 6. 8 бит это 1
- 7. Речь, музыка, шум это _____ информация.

КРОССВОРД- ПОВТОРЕНИЕ 6 B Б M K C B C K A 0

ЧЕМ ОТЛИЧАЕТСЯ ЦИФРА ОТ ЧИСЛА?

Для записи информации о количестве объектов используются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисления. Знаки системы счисления, с помощью которых записывают числа — это цифры.

ЦИФР ОГРАНИЧЕННОЕ КОЛИЧЕСТВО, А ЧИСЕЛ БЕСКОНЕЧНО МНОГО!

СИСТЕМЫ СЧИСЛЕНИЯ

Позиционные:

десятичная, двоичная, восьмеричная, шестнадцатеричная

Непозиционные:

римская

В позиционных системах счисления значение цифры зависит от ее положения в числе, а в непозиционных — не зависит.

Основные достоинства любой позиционной с/с:

- 1. Простота выполнения арифметических операций.
- 2. Ограниченное количество символов, необходимых для записи числа.

В позиционной с/с положение цифры в числе однозначно определяет тот вклад, который она вносит в состав числа.

Позиция цифры в числе называется <u>разрядом</u>. Совокупность различных цифр или других знаков, используемых для записи чисел называется <u>базисом (алфавитом цифр)</u>.

Количество этих цифр определяет <u>основание с/с.</u> Основание с/с будем записывать в виде нижнего индекса.

Примеры.

Базис десятичной с/с состоит из 10 цифр:

 $0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \Rightarrow$ ее основание 10.

Если взять в качестве основания число 2, то получим двоичную систему счисления, базис которой состоит только из цифр 0 и 1.

Основанием системы счисления может быть любое натуральное число, большее 1.

Название	Осно-	Цифры	Где
c/c	вание	(базис)	используется
Двоичная	2	0,1	В компьютере
Восьмеричная	8	0,1,2,3,4,5,6,7	В компьютере
Шестнадца-	16	0,1,2, 3, 4, 5, 6, 7, 8, 9,	В компьютере
теричная		A (10), B (11), C(12),	
		D(13), E(14), F(15)	
Десятичная	10	0,1,2,3,4,5,6,7,8,9	В современной
			повседневной
			ИНЕИЖ
Двенадцате-	12	0,1,2,3,4,5,6,7,8,9,	В мире, до первой
ричная	дюжина	знак, знак	трети XX века
Пятеричная	5	0,1,2,3,4	В Китае

Число в позиционной с/ может быть записано в **развернутой форме:**

$$A_n = \pm (a_{n-1} \cdot q^{n-1} + a_{n-2} \cdot q^{n-2} + ... + a_0 \cdot q^0 + a_{-1} \cdot q^{-1} + a_{-2} \cdot q^{-2} + ... + a_{-m} \cdot q^{-m})$$

3десь: **A** — само число,

q — основание системы счисления,

 ${f a_i}$ — цифры данной системы счисления $(a_{n-2}; a_{n-1} \ {\it u} \ {\it dp.}),$

n — число разрядов целой части числа, m — число разрядов дробной части числа.

Пример. В десятичной с/с:

2951,67₁₀ =
$$2 \cdot 10^3 + 9 \cdot 10^2 + 5 \cdot 10^1 + 1 \cdot 10^0 + 6 \cdot 10^{-1} + 7 \cdot 10^{-2}$$

Свернутой формой записи числа называется запись в виде:

$$A = a_{n-1} a_{n-2} \dots a_1 a_0, a_{-1} a_{-2} \dots a_{-m}$$

Алгоритм перевода:

1. Представьте число в развернутой форме.

При этом основание с/с должно быть представлено в десятичной системе счисления.

2. Найдите сумму ряда. Полученное число является значением числа в десятичной системе счисления.

Примеры:

Переведем число 11001₂ в десятичную систему счисления.

1. Запишем число в развернутой форме:

$$1101_2 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0.$$

2. Найдем сумму ряда:

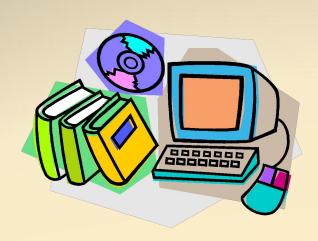
$$2^4 + 2^3 + 0 + 0 + 2^0 = 16 + 8 + 4 + 1 = 29_{10}$$

Переведем число $16,4_8$.

- 1. Запишем число в развернутой форме: $1 \cdot 8^1 + 6 \cdot 8^0 + 4 \cdot 8^{-1}$
- 2. Найдем сумму: $8+6+0,5=14,5_{10}$.

Алгоритм перевода целых чисел из десятичной системы счисления в любую другую:

- 1. Последовательно выполнить деление данного числа и получаемых целых частных на основание новой с/с, пока не получится частное, меньшее делителя.
- 2. Полученные остатки являются цифрами числа в новой с/с.
- 3. Составить число в новой системе счисления, записывая его начиная с последнего остатка.


Пример:

Перевести в двоичную

систему счисления: 74910

Решение:

$$749_{10} = 1011101101_2$$
, т. к.

749	1 1
374	0
187	1
93	1
46	0
23	1
11	1
5	1
2	0
1 —	

ПРАКТИЧЕСКОЕ ЗАДАНИЕ:

Произвести перевод чисел в заданную систему счисления, при необходимости используя программу **Калькулятор**.

ИТОГИ УРОКА:

- Мы рассмотрели, что такое система счисления, виды систем счисления.
- Научились производить перевод чисел из одной системы счисления в другую.
- Продолжили совершенствовать навыки работы с числовой информацией на компьютере.

ДОМАШНЕЕ ЗАДАНИЕ

Переведите число – год вашего рождения в двоичную систему счисления.

ПРИ СОЗДАНИИ ПРЕЗЕНТАЦИИ И ПОДГОТОВКЕ УРОКА БЫЛИ ИСПОЛЬЗОВАНЫ СЛЕДУЮЩИЕ МАТЕРИАЛЫ И ЛИТЕРАТУРА:

- 1. Угринович Д. Н., «Информатика и информационные технологии», -М.: «Бином», 2006. -511 с.: ил.
- 2. Угринович Н., Босова Л., Михайлова Н. «Практикум по информатике и информационным технологиям» М.: Бином, 2002. -214 с.
- 3. Шелепаева А.Х. «Поурочные разработки по информатике. Пособие для 10-11 кл. средней школы» -М.: «Вако», 2008. -352с.
- 4. Шелепаева А.Х. «Поурочные разработки по информатике. Пособие для 8-9 кл. средней школы» -М.: «Вако», 2007. -327 с.

http://white-power.tut.su/public/image/other/comp.png,

http://img1.liveinternet.ru/images/attach/c/3/75/585/75585299 large MatI1036.jp http://3.bp.blogspot.com/ djM44k05GRQ/TSuZUfziOFI/AAAAAAAAAAQ/ No5f9uRyB8/s1 600/%25D0%25A0%25D0%25B8%25D1%2581%25D1%2583%25D0%25BD%25D0%2