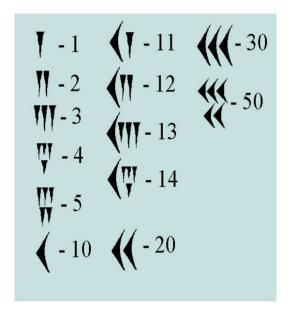
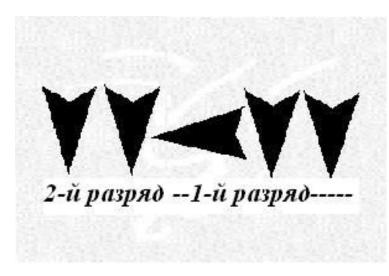
Системы счисления




Основные понятия систем счисления

Что называют системой счисления? Какие виды систем счисления быван Приведите примеры систем счислен.

Системой счисления или нумерацией называется

Унарные, непозиционные и позиционные

Основные понятия позиционных систем счисления

Что является основой любой позиционной системы счисления?

Что образуют цифры в совокупности?

Как будет называться количество цифр в алу

Размерность алфавита количество цифр в алфавите. <u>Алфавит</u> - системы счисления - совокупность всех цифр.

Формула развернутой записи числа. Выполните задание:

Запишите числа в развернутой записи:			
123,56 ₁₀	1242 ₈	2541 ₆	
123 ₅	1945 ₁₀	3254,36 ₇	
101101 ₂	FD2E ₁₆	3659,85 ₁₁	

$$\mathbf{A}_{\mathbf{q}} = \mathbf{a_{n-1}} * \mathbf{q}^{n-1} + \ldots + \mathbf{a_1} * \mathbf{q}^1 + \mathbf{a_0} * \mathbf{q}^0 + \mathbf{a_{-1}} * \mathbf{q}^{-1} + \ldots + \mathbf{a_{-m}} * \mathbf{q}^{-m},$$

Традиционная система счисления

$$\mathbf{A}_{\mathbf{q}} = \mathbf{a_{n-1}} * \mathbf{q}^{n-1} + \ldots + \mathbf{a_1} * \mathbf{q}^1 + \mathbf{a_0} * \mathbf{q}^0 + \mathbf{a_{-1}} * \mathbf{q}^{-1} + \ldots + \mathbf{a_{-m}} * \mathbf{q}^{-m},$$

Основание системы счисления размерность алфавита Базис системы счисления - ряд целых степеней десятки

Основанием **традиционной системы счисления** может быть любое натуральное число, начиная с двух, а базис - бесконечный в обе стороны ряд целых степеней основания.

Примеры позиционных систем и их алфавитов

Система счисления	Основание	Алфавит цифр
Десятичная	10	0,1,2,3,4,5,6,7,8,9
Двоичная	2	0,1
Восьмеричная	8	0,1,2,3,4,5,6,7
Шестнадцатеричная	16	0,1,2,3,4,5,6,7,8,9, A(10),B(11),C(12), D(13),E(14),F(15)

Выполним следующие задания:

Задача №1. Число в троичной системе счисления: 2011,1₃ нужно перевести в десятичную систему.

Задача №2. Шестнадцатеричное число 2AF,8C₁₆ перевести в десятичную систему.

Задача №3. Двоичное число 1010101111,100011₂ перевести в десятичную систему.

Схема Горнера и перевод чисел целых чисел

Старшую цифру умножаем на основание, добавляем вторую цифру, результат умножаем на основание, добавляем третью цифру и так до тех пор, пока не прибавим последнюю цифру.

Результатом будет десятичная запись числа. Ясно, что полученное равенство будет справедливо для любых целых Р-ичных чисел, а формулу можно записать в общем виде:

 $a_n a_{n-1} a_{n-2} ... a_1 a_{0p} = (... (a_n * p + a_{n-1}) * p + a_{n-2}) * p + ...) + a_1) * p + a_0.$

Эта формула и является иллюстрацией схемы Горнера для перевода целых чисел в десятичную систему счисления.

Нетрадиционная система счисления (числа Фибоначчи).

Алфавит фибоначчиевой системы счисления из двух цифр 0 и 1.

Базисом этой системы является следующий ряд чисел: 1, 2, 3, 5, 8, 13, 21, 34, Он называется рядом Фибоначчи или числами Фибоначчи.

Ряд Фибоначчи строиться следующим образом. Первые два число $F_1=1$ и $F_2=2$. Каждое следующее равно сумме двух предыдущих чисел.

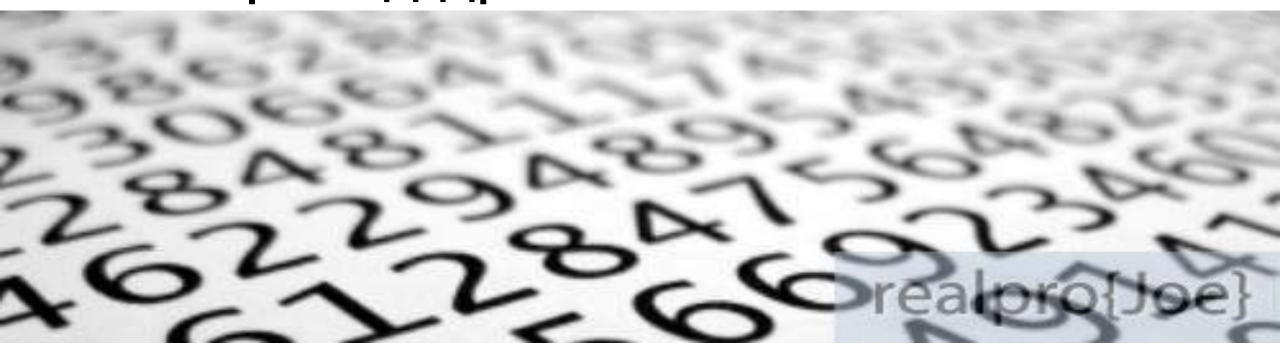
Особенность Фибоначчиевой системы.

Неоднозначность представления некоторых целых чисел:

$$3 = 11_{fib} = 100_{fib}$$

 $8 = 10000_{fib} = 1100_{fib} = 1011_{fib}$

Такое свойство системы называется избыточной.


Благодаря избыточности можно обнаружить потерю данных, возникающих из-за технических сбоев.

Отсюда интерес к фибоначчиевой системе счисления со стороны конструкторов вычислительной техники.

Перевод десятичных чисел в другие системы счисления.

- 1. Перевод целого числа
- 2. Перевод дробного числа

Перевод целого числа (пример)

Задача №4. Перевести число 58₁₀ в троичную систему счисления.

Задача №5. Перевести число 121₁₀ в пятеричную систему счисления.

Перевод дробного числа

Первая ситуация: после некоторого числа умножений в дробной части произведения получился 0.

Задача №6. Перевести десятичную дробь 0,625 в двоичную систему счисления.

Перевод дробного числа

Вторая ситуация: Получение периодической дробной части. В таком случае последовательные умножения надо продолжать до выделения дробной части.

Задача №7. Перевести число 0,246₁₀ в пятеричную систему счисления.

