

Построение остовного (покрывающего) дерева графа

Преподаватель «И и ИКТ» ГБОУ лицея №1557 Куленчик Олеся Николаевна

Основные определения

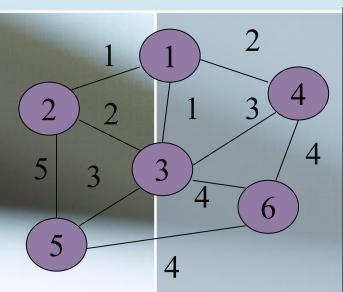
Остовное дерево – это подграф, не содержащий циклов, включающий все вершины исходного графа, а сумма длин ребер которого минимальна.

Цикломатическое число – показывает сколько ребер надо удалить, чтобы в нем не осталось ни одного цикла.

 $\gamma = n-m+1$

Алгоритмы построения

метод Крускала


метод Прима

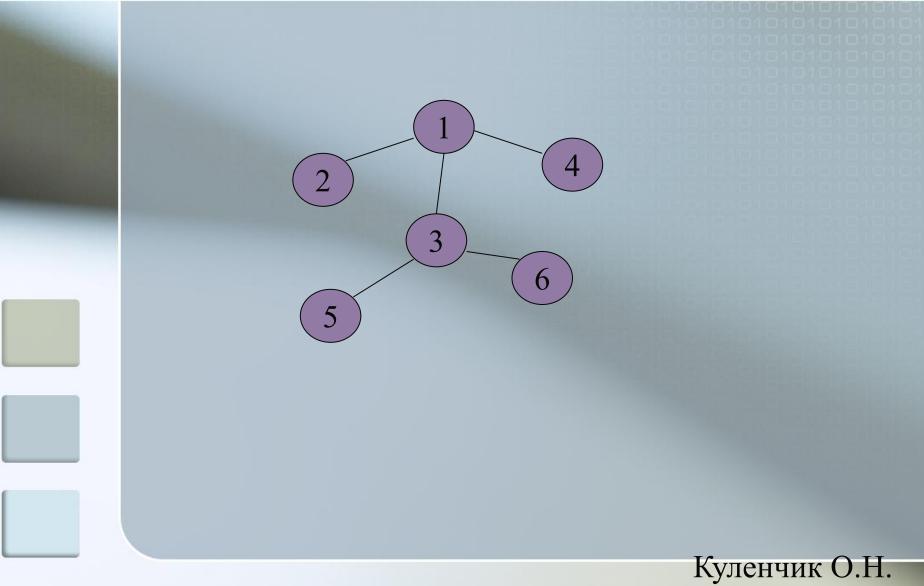
Куленчик О.Н.

Метод Крускала

Ребра исходного графа записываются в порядке возрастания их весов, каждая вершина графа помещается в одноэлементное подмножество. Просматривая ребра исходного графа, делается вывод о включении, либо исключении ребра из остовного дерева. При этом, если ребро связывает вершины, принадлежащие разным подмножествам, то оно включается в остовное дерево, в противном случае ребро удаляется из рассмотрения. Куленчик О.Н.

Пример. Пусть дан граф (взвешенный, неориентированный). Необходимо построить остовное дерево методом Крускала.

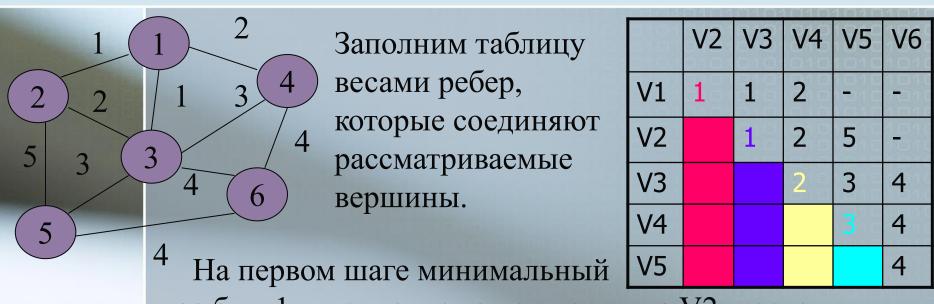
Подсчитаем цикломатическое число


$$\gamma = n-m+1$$

$$\gamma = 10 - 6 + 1 = 5$$

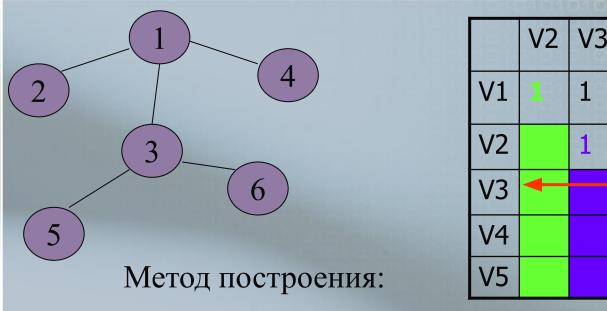
10 10		Множество вершин	0101010
ребро	вес	{V ₁ }, {V ₂ }, {V ₃ }, {V ₄ }, {V ₅ }, {V ₆ }	опер
(V ₁ , V ₂)	1	$\{V_1, V_2\}, \{V_3\}, \{V_4\}, \{V_5\}, \{V_6\}$	вкл
(V ₁ , V ₃)	1	$\{V_1, V_2, V_3\}, \{V_4\}, \{V_5\}, \{V_6\}$	вкл
(V ₁ , V ₄)	2	{V ₁ , V ₂ , V ₃ , V ₄ }, {V ₅ }, {V ₆ }	вкл
(V ₂ , V ₃)	2		искл
(V ₃ , V ₄)	3		искл
(V ₃ , V ₅)	3	$\{V_1, V_2, V_3, V_4, V_5\}, \{V_6\}$	вкл
(V ₃ , V ₆)	4	$\{V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, V_{6}\}$	вкл
$(V_{4'} V_6)$	4		искл
$(V_{5'} V_{6})$	4		искл
(V ₂ , V ₅)	5		искл

Проверка сошлась, надо было удалить 5 ребер и мы их удалили


Ответ: полученное остовное дерево

Метод Прима

В этом методе первоначально выбирается любая вершина для начального рассмотрения ее по отношению к другим вершинам. После чего, выбирается минимальный вес (с вершиной). Вершину с минимальным весом удаляем из дальнейшего рассмотрения и сносим ее на следующий уровень. Дальше мы начинаем рассматривать снесенную вершину относительно других, оставшихся вершин.


Пусть дан граф (взвешенный, неориентированный). Необходимо построить остовное дерево методом Прима.

вес был 1 и принадлежал он вершине V2, поэтому мы ее выбираем и удаляем из дальнейшего рассмотрения. На втором шаге мы рассматриваем вершину V2, т.к. ее мы удалили, относительно оставшихся вершин. Причем на втором шаге не только проставляем веса ребер, но и сравниваем их с предыдущим уровнем. Если на предыдущем уровне вес был меньше, то сносим min вес.

Куленчик О.Н.

Ответ: полученное остовное дерево

1010	V2	V3	V4	V5	V6
V1	1	1	2		1010
V2		1	2	5	
V3	+		2	3	4
V4				3	4
V5					4

Берем последний min вес, он равен 4 и относится к вершине V6 □ что вершину V6 надо соединить в V3, т.к. первый раз 4, в этом столбце, появилось напротив вершины V3. Все оставшиеся вершины соединяются по этому же принципу.