

Тема:

Порты ввода\вывода микроконтроллеров серии AVR. Внешние прерывания

к.т.н., доцент каф.501 Мазуренко А.В.

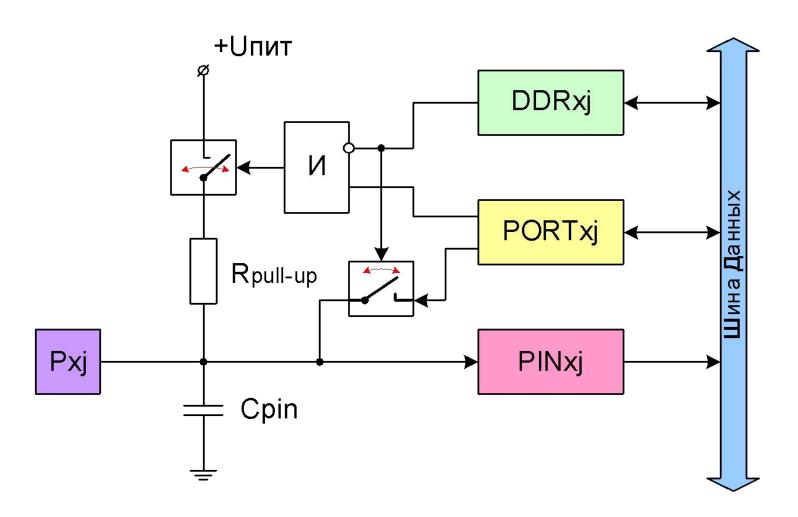


Рис.1. Упрощенная логическая схема линии ввода\вывода порта AVR-МК:

 $x \in [A, B, C, D]$ – имя порта ввода\вывода, j = 0...7 – номер линии порта.

PORT x Data Direction Register

Биты		7	6	5	4	3	2	1	0	
Порт А	\$1A (\$3A)	DDRA7	DDRA6	DDRA5	DDRA4	DDRA3	DDRA2	DDRA1	DDRA0	DDRA
Порт В	\$17 (\$37)	DDRB7	DDRB6	DDRB5	DDRB4	DDRB3	DDRB2	DDRB1	DDRB0	DDRB
Порт С	\$14 (\$34)	DDRC7	DDRC6	DDRC5	DDRC4	DDRC3	DDRC2	DDRC1	DDRC0	DDRC
Порт D	\$11 (\$31)	DDRD7	DDRD6	DDRD5	DDRD4	DDRD3	DDRD2	DDRD1	DDRD0	DDRD
Чтение/Запись		R/W								
Нач. состоя	яние	0	0	0	0	0	0	0	0	

•Bits 7...0 – DDRx7...0 – Биты направление передачи данных порта х

PORT x Output Data Register

Биты		7	6	5	4	3	2	1	0	
Порт А	\$1B (\$3B)	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	PORTA
Порт В	\$18 (\$38)	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
Порт С	\$15 (\$35)	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	PORTC
Порт D	\$12 (\$32)	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	PORTD
Чтение/Заг	пись	R/W								
Нач. состо	яние	0	0	0	0	0	0	0	0	

•Bits 7...0 – РОКТх7...0 – Биты выходных данных порта х

PORT x Input Pins Data Register

Биты		7	6	5	4	3	2	1	0	
Порт А	\$19 (\$39)	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	PINA
Порт В	\$16 (\$36)	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	PINB
Порт С	\$13 (\$33)	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	PINC
Порт D	\$10 (\$30)	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	PIND
Чтение/Заг	ТИСЬ	R	R	R	R	R	R	R	R	
Нач. состо	яние	Z	Z	Z	Z	Z	Z	Z	Z	

[•]Bits 7...0 – PINx7...0 – Биты входных данных порта х

IN - Load an I\O Location to Register – Загрузка данных из регистра пространства вводы\вывода в регистр общего назначения

Операция: Rd ← I\O(AdrIO)

Синтаксис:	Операнды:	Счетчик команд:
in Rd, AdrlO	0≤ d ≤31, 0≤ AdrlO ≤63	PC ← PC+1

Флаги на которые воздействует команда: не воздействует

Количество тактов выполнения операции: 1.

OUT - Store Register to I\O Location – Загрузить данные из регистра общего назначения в регистр вводы\вывода

Операция: I\O(AdrIO) ← Rr

Синтаксис:	Операнды:	Счетчик команд:
out AdrIO,Rr	0≤ r ≤31, 0≤ AdrlO ≤63	PC ← PC+1

Флаги на которые воздействует команда: не воздействует

Количество тактов выполнения операции: 1.

Пример: Объявление входов\выходов, установка\сброс линий портов ввода\вывода

SBI – Set bit to I\O Register – Установить бит в регистре пространства ввода\вывода

Операция: I\O(AdrIO,b) ← 1

Синтаксис:	Операнды:	Счетчик команд:
sbi AdrlO,b	0≤ AdrIO ≤31, 0≤ b ≤7	PC ← PC+1

Флаги на которые воздействует команда: не воздействует

Количество тактов выполнения операции: 2.

CBI - Clear bit in I\O Register - Очистить бит в регистре пространства ввода\вывода

Операция: I\O(AdrIO,b) ← 0

Синтаксис:	Операнды:	Счетчик команд:
cbi AdrlO,b	0≤ AdrIO ≤31, 0≤ b ≤7	PC ← PC+1

Флаги на которые воздействует команда: не воздействует

Количество тактов выполнения операции: 2.

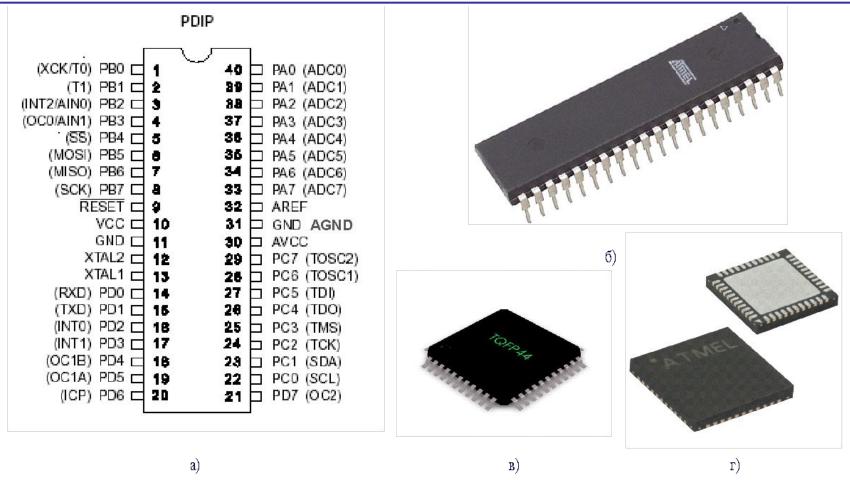


Рис.2. Назначение выводов (a) и корпуса МК ATmega16:

- (6) PDIP-40 (Plastic Dual Inline Package);
- (B) TQFP-44 (Thin profile plastic Quad Flat Package);
- (r) MLF-44 (Micro Lead Frame Package)

Альтернативные функции порта А

Выводы	Описание альтернативной функции			
порта А				
PA7	ADC7 – вход 7-го канала АЦП			
PA6	ADC6 – вход 6-го канала АЦП			
PA5	ADC5 – вход 5-го канала АЦП			
PA4	ADC4 – вход 4-го канала АЦП			
PA3	ADC3 – вход 3-го канала АЦП			
PA2	ADC2 – вход 2-го канала АЦП			
PA1	ADC1 – вход 1-го канала АЦП			
PA0	ADC0 – вход 0-го канала АЦП			

Альтернативные функции порта В

Выводы	Описание альтернативной функции
порта В	
PB7	SCK (SPI Bus Serial Clock) – вход тактовых импульсов последовательного интерфейса связи с
FB/	периферией
PB6	MISO (SPI Bus Master Input/Slave Output) – вход данных ведущего \ выход данных ведомого
FB0	последовательного интерфейса связи с периферией
PB5	MOSI (SPI Bus Master Output/Slave Input) – выход данных ведущего\вход данных ведомого
PB3	последовательного интерфейса связи с периферией
PB4	\overline{SS} (SPI Slave Select Input) — вход выбора режима ведомого
PB3	AIN1 (Analog Comparator Negative Input) – отрицательный вывод аналогового компаратора
LD3	OC0 (Timer/Counter0 Output Compare Match Output) – выход совпадения таймера\счетчика 0
PB2	AINO (Analog Comparator Positive Input) – положительный вывод аналогового компаратора
PD2	INT2 (External Interrupt 2 Input) – вход внешнего прерывания 2
PB1	T1 (Timer/Counter1 External Counter Input) – внешний вход таймера\счетчика 1
PB0	T0 (Timer/Counter0 External Counter Input) – внешний вход таймера\счетчика 0
PB0	XCK (USART External Clock Input/Output) – внешний вход\выход тактовых импульсов УАПП

Альтернативные функции порта С

Выводы	Описание альтернативной функции
порта С	
PC7	TOSC2 (Timer Oscillator Pin 2) – вывод 2 тактового генератора системы реального времени
PC6	TOSC1 (Timer Oscillator Pin 1) – вывод 1 тактового генератора системы реального времени
PC5	TDI (JTAG Test Data In) – вход команд и данных от внутрисхемного эмулятора
PC4	TDO (JTAG Test Data Out) – выход данных на внутрисхемный эмулятор
PC3	TMS (JTAG Test Mode Select) – вход выбора режима работы внутренней схемы эмуляции
PC2	TCK (JTAG Test Clock) – вход тактовых импульсов интерфейса JTAG
PC1	SDA (Two-wire Serial Bus Data Input/Output Line) – шина данных двухпроводного
	последовательного интерфейса связи
PC0	SCL (Two-wire Serial Bus Clock Line) – вход тактовых импульсов двухпроводного
	последовательного интерфейса связи

<u>Альтернативные функции порта D</u>

Выводы порта D	Описание альтернативной функции
PD7	OC2 (Timer/Counter2 Output Compare Match Output) – выход совпадения таймера\счетчика 2
PD6	ICP (Timer/Counter1 Input Capture Pin) – вход захвата таймера\счетчика 1
PD5	OC1A (Timer/Counter1 Output Compare A Match Output) – выход совпадения А таймера\счетчика 1
PD4	OC1B (Timer/Counter1 Output Compare B Match Output) – выход совпадения В таймера\счетчика 1
PD3	INT1 (External Interrupt 1 Input) – вход внешнего прерывания 1
PD2	INT0 (External Interrupt 0 Input) – вход внешнего прерывания 0
PD1	TXD (USART Output Pin) – выход УАПП
PD0	RXD (USART Input Pin) – вход УАПП

Таблица векторов прерываний МК ATmega16

Nº	Адрес	Источник	Описание
вектора	вектора		
1	\$0000	RESET	Сброс МК
2	\$0002	INT0	Внешнее прерывание 0 (External Interrupt Request 0)
3	\$0004	INT1	Внешнее прерывание 1 (External Interrupt Request 1)
4	\$0006	TIMER2 COMP	Совпадение при сравнении таймера/счетчика 2
			(Timer/Counter2 Compare Match)
5	\$0008	TIMER2 OVF	Переполнение таймера/счетчика 2 (Timer/Counter2 Overflow)
6	\$000A	TIMER1 CAPT	Захват таймера/счетчика 1 (Timer/Counter1 Capture Event)
7	\$000C	TIMER1 COMPA	Совпадение А при сравнении таймера/счетчика 1
			(Timer/Counter1 Compare Match A)
8	\$000E	TIMER1 COMPB	Совпадение В при сравнении таймера/счетчика 1
			(Timer/Counter1 Compare Match B)
9	\$0010	TIMER1 OVF	Переполнение таймера/счетчика 1 (Timer/Counter1 Overflow)
10	\$0012	TIMER0 OVF	Совпадение при сравнении таймера/счетчика 0
			(Timer/Counter0 Compare Match)
11	\$0014	SPI, STC	Завершение пересылки по ПИСП (Ser ial Transfer Complete)
12	\$0016	USART, RXC	Завершение приема с помощью УАПП (UART, Rx Complete)
13	\$0018	USART, UDRE	Регистр данных УАПП пуст (UART Data Register Empty)
14	\$001A	USART, TXC	Завершение передачи с помощью УАПП (UART, Tx Complete)
15	\$001C	ADC	Завершение АЦ-преобразования (ADC Conversion Complete)
16	\$001E	EE_RDY	Готовность к следующему сеансу обмена ЭСППЗУ (EEPROM
			Ready)
17	\$0020	ANA_COMP	Срабатывание аналогового компаратора (Analog Comparator)
18	\$0022	TWI	Прием данных по двухпроводному интерфейсу I ² C
19	\$0024	INT2	Внешнее прерывание 2 (External Interrupt Request 2)
20	\$0026	TIMER0 COMP	Совпадение при сравнении таймера/счетчика 0
			(Timer/Counter0 Compare Match)
21	\$0028	SPM_RDY	Готовность загрузочного сектора

Общий регистр управления прерываниями (GICR - General Interrupt Control Register)

Биты	7	6	5	4	3	2	1	0
\$3B (\$5B) GICR	INT1	INTO	INT2	-	-	-	IVSEL	IVCE
Чтение/Запись	R/W	RW	R/W	R	R	R	R/W	RW
Начальное состояние	0	0	0	0	0	0	0	0

- Bits 0 IVCE: Interrupt Vector Change Enable Бит разрешения изменения таблицы прерываний
- Bits 1 IVSEL: Interrupt Vector Select Бит выбора таблицы прерываний
- Bits 5...7 INT1/0/2: External Interrupt Request 1/0/2 Enable Бит разрешения запроса внешнего прерывания 1/0/2

Регистр флагов внешних прерываний (GIFR - General Interrupt Flag Register)

Биты	7	6	5	4	3	2	1	0
\$38 (\$58) GIFR	INTF1	INTF0	INTF2	-	•	-	-	-
Чтение/Запись	RW	R/W	R/W	R	R	R	R	R
Начальное состояние	0	0	0	0	0	0	0	0

- Bits 7...5 INTF1 INTF2: External Interrupt 1 2 Flags Флаги внешних прерываний 1...2
- Bits 4...0 Res: Reserved Bits Зарезервированные биты

<u>Регистр управления микроконтроллером (MCUCR – MCU Control Register)</u>

Биты	7	6	5	4	3	2	1	0
\$35 (\$55) MCUCR	SM2	SE	SM1	SM0	ISC11	ISC10	ISC01	ISC00
Чтение/Запись	R/W	RW	R/W	RW	RW	RW	RW	R/W
Начальное состояние	0	0	0	0	0	0	0	0

- Bits 7...4 Биты выбора энергосберегающего режима работы МК
- Bit 3, 2 ISC11, ISC10: Interuppt Sense Control 1 Bit1 and Bit0 Биты управления срабатыванием внешнего прерывания 1.

Выбор вида сигнала, который приводит к возникновению внешнего прерывания 1, определяется комбинациями битов:

ISC11	ISC10	Описание
0	0	Прерывание по уровню лог. 0 на INT1
0	1	Прерывание по переключению логического уровня
1	0	Прерывание по спадающему фронту на INT1
1	1	Прерывание по нарастающему фронту на INT1

 Bit 1, 0 – ISC01, ISC00: Interuppt Sense Control 0 Bit1 and Bit0 – Биты управления срабатыванием внешнего прерывания 0.

Выбор вида сигнала, который приводит к возникновению внешнего прерывания 0, определяется комбинациями битов:

ISC01	ISC00	Описание
0	0	Прерывание по уровню лог. 0 на INT0
0	1	Прерывание по переключению логического уровня
1	0	Прерывание по спадающему фронту на INT0
1	1	Прерывание по нарастающему фронту на INT0

Регистр статуса микроконтроллера

Биты	7	6	5	4	3	2	1	0
\$34 (\$54) MCUSR	JTD	ISC2	-	JTRF	WDRF	BORF	EXTRF	PORF
Чтение/Запись	R/W	R/W	R	R/W	RW	RW	R/W	R/W
Начальное состояние	0	0	0	0	0	0	0	0

- Bit 7 JTD: JTAG Disable Бит запрета работы внутрисхемного эмулятора
- Bit 6 ISC2: Interuppt Sense Control 2 Бит выбора формы активного сигнала внешнего прерывания 2
- Bits 5 Res: Reserved Bit Зарезервированный бит
- Bit 4 JTRF: JTAG Reset Flag Флаг сброса МК от внутрисхемного эмулятора
- Bit 3 WDRF: Watchdog Reset Flag Флаг сброса МК по сторожевому таймеру
- Bit 2 BORF: Brown-out Reset Flag Флаг сброса МК по снижению питания
- Bit 1 EXTRF: External Reset Flag Флаг внешнего сброса МК
- Bit 0 PORF: Power On Reset Flag Флаг сброса МК при включении питания

Если бит **ISC2** = 0 – внешнее прерывание 2 возникает по спадающему фронту сигнала на выводе с альтернативной функцией INT2.

Если бит **ISC2** = 1 – внешнее прерывание 2 возникает по нарастающему фронту сигнала на выводе с альтернативной функцией INT2.

Внешнее прерывание 2 фиксируется асинхронно. Нарастающий или спадающий фронт импульса длительностью больше 50 нс приводит к возникновению внешнего прерывания 2.

SEI – Set Global Interuppt Flag – Установить флаг глобального разрешения прерываний

Операция: SREG(I) ← 1

Синтаксис:	Операнды:	Счетчик команд:
sei	1	PC ← PC+1

<u>Флаги на которые воздействует команда:</u> I←1 Количество тактов выполнения операции: 1.

CLI – Clear Global Interuppt Flag – Очистить флаг глобального разрешения прерываний

Операция: SREG(I) ← 0

Синтаксис:	Операнды:	Счетчик команд:
cli	1	PC ← PC+1

<u>Флаги на которые воздействует команда:</u> I←0 Количество тактов выполнения операции: 1.

<u>Примечание.</u> При возникновении прерывания, в момент перехода на начало вектора прерывания (в таблице векторов прерываний) происходит автоматический сброс флага возникшего прерывания и бита (I) глобального разрешения прерываний в регистре статуса!

Задание:

Написать программу МК ATmega16, которая бы выполняла такие действия:

- 1)постоянно считывала однобайтное беззнаковое число А с выводов порта А;
- 2) суммировала число А с беззнаковой константой К1;
- 3)выводила старший байт результата на выводы порта С, а младший байт на выводы порта В;
- 4)в любой момент времени по сигналу, в виде перехода из состояния лог. 1 в состояние лог. 0 на выводе PD2, инвертировала состояние вывода PD0.

Пункты задания 2 — 3 задания оформить в виде вызова подпрограммы. Программу выполнять для константы К1=100.