Раздел 4

Редуцирование в динамическом анализе

Раздел 4. Редуцирование в динамическом анализе

•	ВВЕДЕНИЕ В ДИНАМИЧЕСКОЕ РЕДУЦИРОВАНИЕ	4 - 3
•		
•	СТАТИЧЕСКАЯ КОНДЕНСАЦИЯ (ВНУТРЕНЕЕ ВЫЧИСЛЕНИЕ)	4 - 5
•	ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ	. 4 - 9
•	УПРАВЛЕНИЕ ЕШЕНИЕМ ПРИ РЕДУЦИРОВАНИИ ГАЙАНА	4 - 10
•	ПРОБЛЕМЫ, ВОЗНИКАЮЩИЕ ПРИ РЕДУЦИРОВАНИИ ГАЙАНА	4 - 11
•	МОДАЛЬНОЕ РЕДУЦИРОВАНИЕ	4 - 13
•	УПРАВЛЕНИЕ РЕШЕНИЕМ ПРИ МОДАЛЬНОМ РЕДУЦИРОВАНИИ	4 - 15
•	ПРИМЕР №2 – МОДАЛЬНЫЙ АНАЛИЗ С ИСПОЛЬЗОВАНИЕМ	
•	РЕДУЦИРОВАНИЯ ГАЙАНА	4 - 16
•	ПРИМЕР №2 – МОДАЛЬНЫЙ АНАЛИЗ ПЛОСКОЙ ПЛАСТИНЫ С	
•	ИСПОЛЬЗОВАНИЕМ СТАТИЧЕСКОГО РЕДУЦИРОВАНИЯ	4 - 17
•	ВХОДНОЙ ФАЙЛ ДЛЯ ПРИМЕРА №2	4 - 19
•	РЕЗУЛЬТАТЫ РЕШЕНИЯ ПРИМЕРА №2	4 - 20

Введение в динамическое редуцирование

Определение

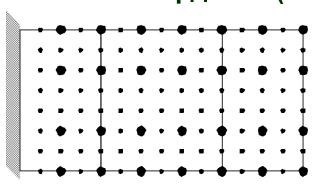
• Динамическое редуцирование – это преобразование одной динамической математической модели в другую с меньшим количеством степеней свободы.

• Причины применения динамического редуцирования

- Математическая модель м.б. слишком велика для того, чтобы использовать ее без редуцирования.
- Математическая модель может быть излишне подробной.
- Динамическое редуцирование позволяет исключить отдельные локальные моды.
- Применение динамического редуцирования дает большую точность (и, вероятно, дешевле), чем создание отдельной, более компактной модели.

Методы динамического редуцирования в MSC.Nastran

- Редуцирование Гайана (Guyan) статическая конденсация
- Обобщенное динамическое редуцирование (GDR, см. Приложение A)
- Модальное редуцирование
- Синтез модальных компонентов (component mode synthesis) разновидность метода суперэлементов см. Раздел 16.



Статическая конденсация (внутреннее вычисление)

- Положим, что $\{u_f\}$ набор незакрепленных (свободных) координат конструкции.
- Разделим

$$\{ \mathbf{u_f} \} = \left\{ \frac{\mathbf{u_a}}{\mathbf{u_o}} \right\}$$

- где
 - ua набор анализируемых координат (analysis set)
 - uo набор неучитываемых координат (omitted set)

^{*} Degrees of freedom removed during Guyan reduction

User-selected dynamic degrees of freedom

Статическая конденсация (внутреннее вычисление)

 Запишем статическое уравнение для uf и разделим матрицу жесткости на O-set и the A-set.

$$\begin{bmatrix}
K_{oo} & K_{oa} \\
K_{oa}T & K_{aa}
\end{bmatrix}
\begin{cases}
u_{o} \\
u_{a}
\end{cases} = \begin{cases}
P_{o} \\
P_{a}
\end{cases}$$
(1)

• Предположим Р_о равным нулю и решим уравнение, выразив и_о через

$$\left\{\mathbf{u}_{\mathbf{o}}\right\} = \left[\mathbf{G}_{\mathbf{o}\mathbf{a}}\right] \left\{\mathbf{u}_{\mathbf{A}}\right\} \tag{2}$$

where
$$\begin{bmatrix} G_{oa} \end{bmatrix} = - \begin{bmatrix} K_{oo} \end{bmatrix}^{-1} \begin{bmatrix} K_{oa} \end{bmatrix}$$
• Переход от A-set к F-set запишется как

$$\{u_f\} = \left\{ \begin{array}{c} u_o \\ \vdots \\ u_a \end{array} \right\} = \left\{ \begin{array}{c} G_{oa} \\ \vdots \\ I \end{array} \right\} \{u_a\}$$

• Зависимость O-set от A-set выражается уравнением (2): O-set – линейная комбинация компонентов A-set, причем столбцы G_{оа} – векторы статической деформации конструкции.

Статическая конденсация (внутреннее вычисление)

• Уравнения для F-set записываются через A-set

$$\Psi^{\mathsf{T}}\mathbf{M}_{\mathsf{f}}\Psi\{\mathbf{u}_{\mathsf{a}}\} + \Psi^{\mathsf{T}}\mathbf{B}_{\mathsf{f}}\Psi\{\mathbf{u}_{\mathsf{a}}\} + \Psi^{\mathsf{T}}\mathbf{K}_{\mathsf{f}}\Psi\{\mathbf{u}_{\mathsf{a}}\} = \Psi^{\mathsf{T}}\mathbf{P}_{\mathsf{f}}$$

or

$$M_{aa}u_a + B_{aa}u_a + K_{aa}u_a = P_a$$

- Динамические задачи решаются относительно редуцированных "координат" (A-set). Компоненты O-set вычисляются с помощью уравнения (2).
- Массы, демпфирование и жесткости, ассоциирующиеся с O-set, "размазываются" на A-set.
- Наибольшие затраты ассоциируются с формированием матриц M_{aa} и B_{aa} , особенно недиагональной матрицы M_{ff} (при распределенной формулировке массы).
- Полученные в результате матрицы K_{aa} , B_{aa} и M_{aa} небольшие и плотно заполненные (ленточная структура матриц нарушается).

NAS102

Декабрь 2001, Стр. 4-7

MSC Moscow

Статическая конденсация (внутреннее вычисление)

• МЕТОДИКА ПРИМЕНЕНИЯ

- Разделяйте степени свободы (U_f) на O-set (U_0) и A-set (U_A) с помощью операторов ОМІТ или ASET.
- Сохраняйте только малую часть степеней свободы (обычно 10% или меньше) в A-set, т.к. вычислительные затраты на статическую конденсацию быстро растут с увеличением величины A-set. Или же сохраняйте в A-set все СС.
- Сохраняйте СС с большими сосредоточенными массами в A-set.
- Сохраняйте в A-set CC, к которым "прикладываются" нагрузки (в анализе переходного процесса и частотного отклика).
- Сохраняйте в A-set CC, необходимые для адекватного описания форм колебаний, представляющих интерес.

Интерфейс пользователя

Либо

1	2	3	4	5	6	7	8	9	10
ASET	ID	С	ID	С	ID	С	ID	С	
ASET	1	123	2	12	4	1	5	1	

и/или

ASET	L C	G	G	G	G	G	G	G	
ASET	123	1	2	3	4	5			

- или
- OMIT, OMIT1
- Указывайте <u>либо</u> A-set (с помощью оператора ASET), <u>либо</u> O-set (с помощью оператора OMIT). Неуказанные степени свободы автоматически относятся к противоположному набору СС.

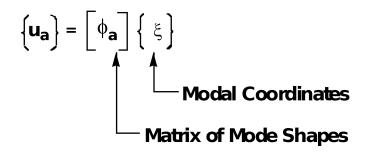
Управление решением при редуцировании Гайана

- Executive Control Section
 - Любой оператор SOL
- Case Control Section
 - Не требуется специальных команд
- Bulk Data Section
 - ASET* (спецификация A-set)
 - ОМІТ* (спецификация O-set)
- *Неуказанные степени свободы автоматически относятся к противоположному набору СС. Если специфицированы оба набора (ASET и OMIT), то неуказанные компоненты относятся к O-set.

Проблемы, возникающие при редуцировании Гайана

- Пользователь должен сформировать A-set
- Точность зависит от умения пользователя сформировать A-set
- Независимо от навыков пользователя для высокой точности расчетов необходима большая размерность A-set – не менее, чем в 2-5 раз больше, чем желаемое количество сохраняемых форм колебаний
- Редуцирование жесткости выполняется точно, масс и демпфирования только приближенно
- Наибольшие погрешности имеют место при моделировании "высоких" мод колебаний
- Локальные моды могут быть "потеряны" вовсе <u>PE3ЮМЕ</u>
- В целом не рекомендуется к применению, за исключением анализа согласованности результатов расчетов и испытаний (см. Раздел 20)

Проблемы, возникающие при редуцировании Гайана


 При статической конденсации локальные динамические эффекты могут быть "потеряны".

$$\left\{ u_{0}^{O} \right\} = \left[K_{oo}^{-1} \right] \left\{ P_{o} \right\}$$
 Loads on O-set Components

Модальное редуцирование

- Все типы линейных динамических решений в MSC. Nastran имеют две разновидности.
 - Прямое решение решение относительно компонентов A-set.
 - Модальное решение решение относительно модальных координат (H-set).
- В модальных алгоритмах координаты A-set записываются через модальные координаты.

 Модальные векторы (модальные формы) – это результат решения собственной задачи без учета демпфирования (в A-set координатах)

$$[M_{aa}] \{u_a\} + [K_{aa}] \{u_a\} = 0$$

Модальное редуцирование

 Уравнения колебаний для A-set записываются относительно модальных координат (H-set notation), причем это выполняется автоматически.
 (Замечание: E-set не показан для компактности записи)

• Если собственные векторы нормализованы по массе и не используются К2PP, M2PP, B2PP и TF, тогда:

[I]
$$\{ \} + [\phi_a^T] B_{aa} \{ \phi_a \} \{ \} + [W^2] \{ \} = [\phi_a^T] \{ P_a \}$$

• <u>Замечание</u>: матрицы A-set м.б. результатом редуцирования Гайана или GDR. В этом случае трансформирование из модальных координат в F-set потребует двух преобразований.

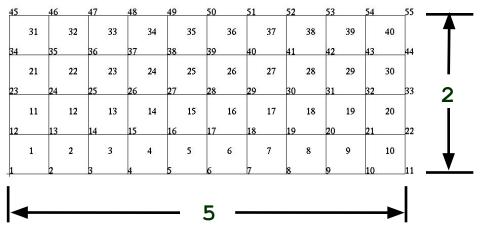
$$\{u_f\} = [\Psi] \{u_a\}$$

 $\{u_a\} = [\phi_a] \{\xi\}$
 $\therefore \{u_f\} = [\Psi] \{\phi_a\} \{\xi\}$

MSC Moscow

Управление решением при модальном редуцировании

- Executive Control Section
 - Любой (динамический) оператор SOL
- Case Control Section
 - METHOD (инициализирует операторы EIGR или EIGRL в Bulk Data Section)
- Bulk Data Section
 - EIGR или EIGRL (задаются параметры решения собственной задачи)


Пример №2

Модальный анализ с использованием редуцирования Гайана

Пример №2. Модальный анализ с использованием редуцирования Гайана

 Используя метод Гайана, редуцировать модель, применявшуюся в Примере №1. Используя автоматический метод Хаусхольдера, найти первые пять собственных частот. Для А-set использовать узлы, указанные на рисунке 4В.

• Рис. 4А. Координаты узлов и топология элементов.

Модальный анализ с использованием редуцирования Гайана

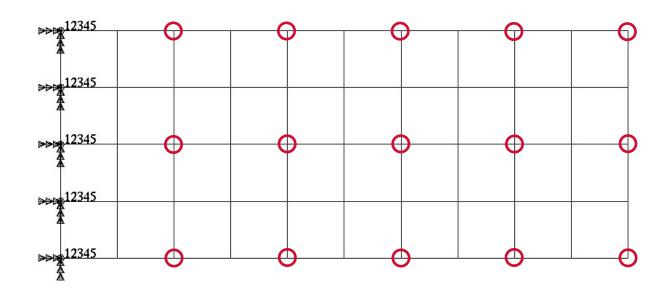


Рис. 4В. І раничные условия.

Входной файл для Примера №2

```
ID SEMINAR, PROB2
SOL 103
TIME 10
CEND
TITLE = REDUCTION PROCEDURES, NORMAL MODES EXAMPLE
SUBTITLE = USING STATIC REDUCTION
ECHO = UNSORTED
SUBCASE 1
SUBTITLE=USING HOUSEHOLDER
       METHOD = 1
       SPC = 1
       VECTOR=ALL
BEGIN BULK
EIGR, 1, AHOU, , , , 5
PARAM, COUPMASS, 1
PARAM, WTMASS, 0.00259
INCLUDE 'plate.bdf'
$ SELECT A-SET, STATIC REDUCTION IS DONE AUTOMATICALLY
ASET1, 345, 3, 5, 7, 9, 11
ASET1, 345, 25, 27, 29, 31, 33
ASET1, 345, 47, 49, 51, 53, 55
ENDDATA
```


Результаты решения для Примера №2

REAL	EIGENV	ALUES				
MODE	EXTRACTION	EIGENVALUE	RADIANS	CYCLES	GENERALIZED	GENERALIZED
NO.	ORDER				MASS	STIFFNESS
1	43	7.057454E+05	8.400865E+02	1.337039E+02	1.000000E+00	7.057454E+05
2	45	1.880877E+07	4.336908E+03	6.902404E+02	1.000000E+00	1.880877E+07
3	44	2.818009E+07	5.308492E+03	8.448727E+02	1.000000E+00	2.818009E+07
4	42	1.956108E+08	1.398609E+04	2.225956E+03	1.000000E+00	1.956108E+08
5	41	2.367820E+08	1.538772E+04	2.449032E+03	1.000000E+00	2.367820E+08
6	40	7.114644E+08	2.667329E+04	4.245186E+03	. 0	.0
7	38	1.011468E+09	3.180359E+04	5.061698E+03	. 0	.0
8	39	1.399003E+09	3.740325E+04	5.952912E+03	. 0	.0
9	36	2.010170E+09	4.483492E+04	7.135699E+03	. 0	.0
10	37	2.030104E+09	4.505668E+04	7.170993E+03	. 0	.0
11	35	3.226556E+09	5.680278E+04	9.040443E+03	. 0	.0
12	34	3.629181E+09	6.024268E+04	9.587920E+03	.0	.0
13	33	4.912542E+09	7.008953E+04	1.115509E+04	. 0	.0
14	32	6.537906E+09	8.085732E+04	1.286884E+04	. 0	.0
15	31	1.160219E+10	1.077134E+05	1.714313E+04	. 0	.0
16	30	1.399534E+10	1.183019E+05	1.882833E+04	.0	.0
17	29	1.633258E+10	1.277990E+05	2.033984E+04	. 0	.0
18	28	2.118600E+10	1.455541E+05	2.316566E+04	. 0	.0
19	27	2.394404E+10	1.547386E+05	2.462741E+04	.0	.0
20	26	2.859707E+10	1.691067E+05	2.691416E+04	.0	.0
21	25	2.915433E+10	1.707464E+05	2.717513E+04	. 0	.0
22	24	3.734805E+10	1.932564E+05	3.075772E+04	. 0	.0
23	23	3.752350E+10	1.937098E+05	3.082988E+04	. 0	.0
24	22	4.883849E+10	2.209943E+05	3.517234E+04	. 0	.0
25	21	5.044853E+10	2.246075E+05	3.574739E+04	. 0	.0
26	20	5.823102E+10	2.413110E+05	3.840584E+04	.0	. 0
27	19	1.070747E+11	3.272227E+05	5.207910E+04	.0	. 0
28	18	1.194176E+11	3.455685E+05	5.499893E+04	. 0	.0
29	17	1.457577E+11	3.817823E+05	6.076254E+04	. 0	. 0
30	16	1.852473E+11	4.304036E+05	6.850086E+04	. 0	. 0
31	12	1.992662E+11	4.463924E+05	7.104556E+04	.0	. 0
32	13	2.096219E+11	4.578448E+05	7.286827E+04	.0	.0
33	15	2.158487E+11	4.645952E+05	7.394262E+04	.0	. 0
34	14	2.167496E+11	4.655638E+05	7.409677E+04	.0	. 0
35	11	3.969222E+11	6.300176E+05	1.002704E+05	. 0	.0
36	10	4.039548E+11	6.355744E+05	1.011548E+05	. 0	.0
37	9	5.184081E+11	7.200056E+05	1.145925E+05	. 0	.0
38	8	3.900314E+12	1.974921E+06	3.143185E+05	.0	.0
39	7	3.920771E+12	1.980094E+06	3.151417E+05	.0	.0
40	6	5.156148E+12	2.270715E+06	3.613955E+05	.0	.0
41	5	2.977769E+15	5.456894E+07	8.684916E+06	. 0	.0
42	4	3.462917E+15	5.884656E+07	9.365720E+06	. 0	.0
43	3	6.992731E+15	8.362255E+07	1.330894E+07	. 0	.0
44	2	1.321399E+16	1.149521E+08	1.829520E+07	. 0	.0
45	1	1.671511E+18	1.292869E+09	2.057665E+08	.0	.0

