УПРЖНЕНИЕ 4

ЭКСПОРТ ЛИНЕЙНОЙ И НЕЛИНЕЙНОЙ МОДЕЛЕЙ МАТЕРИАЛОВ

SOFTWARE

SIMULATING REALITY

MVI320, Workshop 4, August 2001

n Описание задачи

- В этом упражнении вам необходимо подобрать алюминиевый сплав, который должен защитить пол автомобиля от теплового воздействия выхлопной трубы. Так как защитный кожух должен крепиться в нескольких местах, то его тепловое расширение является необходимым условием, которое надо учитывать при проектировании. Будущий кожух изготавливается штамповкой, поэтому для изготовления используется алюминиевый лист. Толщина кожуха кожуха должна быть ~0.05 in.
- Предположим, что максимальная рабочая температура кожуха 300°F, поэтому будем искать материал с соответствующим коэффициентом линейного расширения. Далее экспортируем свойства в MSC/NASTRAN и ANSYS для анализа. Также создадим отчет о выбранном материале.

п Предлагаемые шаги решения

- 1. Найдите материал по определенному критерию.
- 2. Отобразите график свойств.
- 3. Создайте отчет о свойствах материала.
- 4. Экспортируйте материал в два разных формата.

Открываем банк данных

- a. Стартуем MSC.Mvision, набрав в текстовой строке mvbuild.
- b. File => Open Databank...
- с. Выберите demo_metals_ 4Q95.def (Demo Metals Data Based on Mil5-Long Form).

/msc/mvision_db/db_2q01/*.des	
Directories /msc/mvision_db/db_2q01/. /msc/mvision_db/db_2q01/ /msc/mvision_db/db_2q01/analysis.docs /msc/mvision_db/db_2q01/asm_alloy_steel.docs /msc/mvision_db/db_2q01/asm_aluminum.docs /msc/mvision_db/db_2q01/asm_composites.docs /msc/mvision_db/db_2q01/asm_copper.docs /msc/mvision_db/db_2q01/asm_magnesium.docs /msc/mvision_db/db_2q01/asm_magnesium.docs /msc/mvision_db/db_2q01/asm_stainless_steel.docs /msc/mvision_db/db_2q01/asm_stainless_steel.docs	Databanks 101/asm_x_reference_lib.des 101/demo_composites.des 101/demo_metals.des 101/demo_metals_4q95.des 101/dytran.des 101/dytran.des 101/fatigue.des 101/fiber.des 101/ge_plastics.des 101/ge_plastics.des 101/ips.des
Selection Ok Filter	

Используйте список с наборами материалов для отображения только тех материалов, которые имеют в свойствах значения пределов текучести и удельной прочности.

a. B Select a Category Button выберите List ALL Materials, Show YS & YS/DENSITY.

Выберите критерий поиска, используя ключевые слова

- a. B Enter Criteria Value откройте Commercial Name и выберите 7075 Aluminum Alloy.
- b. **OK**.
- с. Выберите Physical Form и Clad Sheet и Sheet. Для того,чтобы выбрать только эти две строки используйте Ctrl.
- d. **OK**.
- е. Так как требуемая толщина кожуха 0.05 дюйма, то выбираем листы в диапазоне толщин, включающем эту величину. Выберите Dimension и T: 0.040-0.062 in T: 0.040-0.125 in
- f. OK и Apply.

I	Key Word List
\neg	Commercial Name
a	7075 Aluminum Alloy Low–Alloy Steel Ti–6Al–4V
-	Ok Apply Cancel Help

Постройте перекрестный график напряжений в зависимости от температуры.

- а. Выберите материалы в списке как показано на рисунке.
- b. Выберите Function/ Plot Column(1,2),(3,4)

_	<u>a</u>			
	Test Temperature (deg_F)	Exposure time (h)	Tensile ² Yield Strength in L-dir. (ksi)	
	70	-0-	63.0,66.0	
10 mm	70	-0-	70.0,72.0	
	70	-0-	63.0,66.0	
	70	-0-	56.0	

 \frown

График должен выглядеть так.

Шаг 5. XY Graphics: Display Selected Materials

b

Давайте посмотрим на один из материалов при помощи Data Viewer. Выберите точку на графике с минимальным значением напряжения и отобразите свойства соответствующего материала.

- а. Кликните XY
 Graphics/ Display
 Selected Materials.
- Б. Появится окно
 Viewer window, на котором будет
 примерно
 следующая
 информация.

	XY Graphics	
	List Points	
	Axis	
	Cross Plots	
	Legend	×
	Edit Plot Title	
	Undo Edits	
	Template	2
)	Display Selected Material	
	Marga Salected Matarial	

Attribute	Selection 1
Source table number	3.7.4.0(c5)
Source handbook	MIL-HDBK-5F
Change Notice number	1
Statistical basis	S
Effective date of data release or approval by MIL5 Coordination Group	90-11-01
Date of entry or last modification in database	92-03-05
Descriptive name of table	Basis S
Ultimate Tensile Strength in L–dir.	66 ksi
Ultimate Tensile Strength in LT-dir.	67 ksi
Tensile Yield Strength in L-dir.	56.0 ksi
Tensile Yield Strength in LT-dir.	56.0 ksi

Шаг 6. CTE11vsTEMP

MVI320, Workshop 4, August 2001

WS 4-11

Найдите коэффициент линейного расширения для 300°F.

- а. В меню XYGraphics выберите
 XY Graphics/List (a) Points/ Interpolate.
- b. Введите **300** для *Temperature*.
- c. Interpolate.
- d. В списке точек появилась новая строка (она выделена).
- е. В соответствии со списком наш коэффициент при 300°F равен 13.1467е-6 in./in.-°F.
- f. Close.

XY Graphics View	Tools
List Points / Interpo	late
Axis	v
Curves	2
Legend	>
Edit Plot Title	
Undo Edits	
Template	>
Views	

ID	emperature (deg_	on Coefficient (mit
Seg 1 Pt 3 – Inter	300	13.1467
Seg 1 Pt 4	441.51	13.6216
Seg 1 Pt 5	622.277	14.1785
Seg 1 Pt 6	1797.334	14.6352
300	Ĭ	
	Interpolate	

Отпечатаем полученную информацию.

- а. Кликните File/
 Print Graphics/
 Plot & Points &
 Pedigree.
- b. Выберите **Previewer** в Select Print Output.
- c. Options.
- d. Выберите все опции (Table Lines..., Attribute Name..., и т. д..)
- e. **OK**.
- f. **OK**.

>	Cerint	
	Select Print Output	
	♦ Output to MIF	
	↓ Output to HTML	
5)	♦ Previewer	
	✓ Output to Printer	
)	Options	
	Advanced Options	
f)	Ok Cancel Help	
Ĩ		

Шаг 9. File: Close

	🔊 scratAAAsNaOet			
	File Edit Navigation Sear	ch		
ľ	Open	!fo		
	Print	!fp		
	Lec02_v8.0_softov.fm			
	Lec01_v8.0_intro.fm			
	Lec03_v8.0_process.fm			
	Appendix_A.fm			
	primer			
	Save Notes and Bookmarks	!ns		
a)	Close	!fc		

Сейчас отображаются страницы, которые будут печататься. а. **File/Close**.

DATABANK

/home/mvlib/access_3.4.3/SUNS/db/demo_metals_4q95.des

CPVSTEMP PEDIGREE DATA

UNS Unified Numbering System ID	A97075
CNAME Common Name	7075 Aluminum Alloy
DESIG Material Designation/ Specification	QQ-A-250/25
FORM Construction/ physical form	Clad sheet
TREAT Finish Heat Treatment/ Conditioning	T76
DIMS Characteristic dimensions	T: 0.040-0.06
DENS Weight density	0.1010 lb/in^3
TEMP Test Temperature	70 deg_F
TABLE Source table number	3.7.4.0(c4)
BOOK Source handbook	MIL-HDBK-5F
CH_NOTICE Change Notice number	1
BASIS	В

BASIS Statistical basis

Теперь экспортируйте материал в MSC/NASTRAN и ANSYS.

- a. В окне Data Viewer кликните File/Export.
- b. В верхней части окна Export выберите следующее:

Target: MSC_NASTRAN_V68

Symmetry: Isotropic Dependencies: Temperature

с. В центре отображена дополнительная информация, которая будет сопровождать описание свойств материала.

	File	Table	XY Gra	phics
	Build	er Funct	ions	
	Print Data & Pedigree			
	Print	Graphic	5	
a	a Export Close Data Viewer			

	Target	MSC_NASTRAN_V68	
b	Symmetry	Isotropic 💷	
	Dependencies	Temperature 🚄	

	Density (RHO)	0.101	lb/in^3
~	Thermal Expansion Coefficient (A)	FIGURE	micro-in/in-deg_F; deg_F
\bigcirc	Reference Temperature (TREF)	70	deg_F
	Structural Damping Coefficient (GE)	ľ	
	Stress Limit in Tension (ST)	56	ksi

Заполните поля Output Name и Material ID (MID). Вы можете также заполнить поля комментариев, если захотите.

d. Заполните:

Output Filename: msc_nastran Material ID(MID): 1

- e. Apply.
- f. Теперь выводим свойства для входного файла ANSYS:

Target:

Ansys_Release_5

Symmetry:IsometricDependencies: TemperatureOutput Filename:ansysMaterial ID(MID):2

- i. Apply.
- j. Cancel.

	Target	ANSYS.	Release_5 💷
	Symmetry	Isotrop	oic 🖃
	Dependencies	Temper	ature 💷
(f)			
	Characteristic dim	ensions	T: 0.040-0.06
	Exposu	ire time	-0- h
	Output Fi	lename	ansys
	Mat	erial ID	4

а

Два файла с именами **msc_nastran** и **ansys** находятся в вашем рабочем каталоге.. Посмотрев эти файлы, вы увидите, что они содержат информацию о свойствах материала в разных форматах – для разных вычислительных комплексов.

Закройте все открытые окна, сбросьте все критерии и выходите из Mvision.

- а. Закройте Data Viewer: File/Close Data Viewer.
- b. Очистите настройки критериев **Clear/Apply**.
- с. Выберите List ALL Materials.
- d. Наконец закройте Mvision.
- e. File/Exit MVISION.
- f. На этом упражнение закончено..

File Table XY Graphics

Print Data & Pedigree...

Builder Functions

Close Data Viewer

Print Graphics

Export...

Specification	
UNS Number	
Commercial Name	'7075 Aluminum Alloy'
Physical Form	'Clad sheet' or 'Sheet'
Heat Treatment	
Dimension	'T: 0.040-0.06' or 'T: 0.040-
Nill Tabla Number	

```
$
$
  MSC.Mvision v3 NASTRAN Material Data Export Utility
       MSC.Mvision Evaluator is confidential & proprietary
                                                                   **
$
   **
$
  **
        to The MacNeal-Schwendler Corp. Use of this file is
                                                                   **
$
   **
        limited to uses permitted by the MSC license agreement.
                                                                   **
$
  Materials record(s) generated by MSC.Mvision
$
$ Number of material records generated = 1
  Materials data exported using template = MSC NASTRAN V68.Isotropic.Temperatu
$
$
  re
  Materials data exported from database = /mvision/release 3.0/db/ demo metals.
$
$
  des
 Additional database header info = M/VISION 2.0 Created by PDA on 1995-12-01
$
   at 15:49:53 Updated by PDA on 1995-12-01 at 15:49:53 System : Sun Unix OS
$
$
    4.1
$
   Unit conversion = no conversion
$
  Material Record 1 of 1
$
$
   Databank Keys for record 1:
$
      Databank Record Number = 7
$
$
      User entered comments =
$
$
$
      UNS= A97075
$
      DESIG= QQ-A-250/25
$
      FORM= Clad sheet
$
      DIMS= T: 0.040-0.062 in
Ś
      EXPOS = -0 - h
```

СОДЕРЖИМОЕ ФАЙЛА MSC_NASTRAN

\$		
\$ Units and Footnotes	for record 1:	
\$ Field	Units	Footnote
\$ 		
\$ FILENAME		
\$ MID		
\$ EvsTemp	Msi	Primary value shown, Secondary
\$ value: 9.8 Msi		
\$ NUvsTemp		
\$ RHO	lb/in^3	
\$ ALPHAvsTemp	<pre>micro-in/in-deg_F; deg_F</pre>	
\$ TREF	deg_F	
\$ GE		
\$ STvsTemp	ksi	
\$ SCvsTemp	ksi	
\$ SSvsTemp	ksi	
\$ MCSID		
\$ KvsTemp	BTU/hr-ft-deg_F; deg_F	
\$ CPvsTemp	BTU/lb-deg_F; deg_F	
\$		
\$ Data Source for reco	ord 1:	

СОДЕРЖИМОЕ ФАЙЛА MSC_NASTRAN

\$ Field	Data Source	Expression
\$ 		
\$ FILENAME	*Modified By U	lser*
\$ MID	*Modified By U	lser*
\$ EvsTemp	Databank	E11T
\$ NUvsTemp	Databank	NU12
\$ RHO	Databank	DENS
\$ ALPHAvsTemp	Databank	CTE11VSTEMP
\$ TREF	Databank	TEMP
\$ GE	*No Data*	
\$ STvsTemp	Databank	YS11T
\$ SCvsTemp	Databank	YS11C
\$ SSvsTemp	Databank	US12S
\$ MCSID	*No Data*	
\$ KvsTemp	*No Data*	CTC11VSTEMP
\$ CPvsTemp	Databank	CPVSTEMP
\$		
\$ This record will be	written as an i	sotropic, temperature-dependent material.
\$		
\$		
\$ For temperature depe	endent thermal e	expansion coefficients,
\$ NASTRAN requires a o	curve of secant	ALPHA vs. temperature.
\$ This has been obtain	ned from the dat	abase figure of
\$ tangent ALPHA vs. to	emperature using	TREF = 7.0000E+01
\$		
\$ The following table	shows the origi	nal data from the database
\$ (first two columns)	, and the comput	ed secant ALPHA.
\$ An extra point on the	ne table has bee	en added at TREF = $7.0000E+01$.
\$		

```
$
           Temperature
                         Tangent ALPHA
                                         Secant ALPHA
$
           _____
                               _____
                                         _____
$
           0.0000E+00
                            1.2081E+01
                                           1.2207E+01
$
   TREF = 7.0000E+01
                            1.2333E+01
                                           1.2333E+01
$
           2.3750E+02
                                           1.2635E+01
                            1.2937E+01
$
           3.0000E+02
                            1.3147E+01
                                           1.2705E+01
$
           4.4151E+02
                            1.3622E+01
                                           1.2879E+01
$
           6.2228E+02
                            1.4178E+01
                                           1.3092E+01
$
                            1.4635E+01
           7.9733E+02
                                           1.3278E+01
$
$ The following TABLEM1 entry defines the temperature variation of ALPHA:
$
TABLEM1
              1
                                                                              1
                                                                       +M
      1
             0.0 12.2073 70.0000 12.3334 237.501 12.6352 300.000 12.7046+M
                                                                              2
+M
+M
      2 441.510 12.8793 622.277 13.0919 797.334 13.2776 ENDT
$
$
$ The material properties written to the following MAT1 bulk data entry are:
$
                     Material ID (MID) = 1
$
                   Young's Modulus (E) = 1.0300E+01
$
                   Poisson's Ratio (NU) = 3.3000E-01
$
                         Density (RHO) = 1.0100E-01
$
     Thermal Expansion Coefficient (A) = (TABLEM1 = 1)
$
          Reference Temperature (TREF) = 7.0000E+01
$
   Structural Damping Coefficient (GE) = 0.0000E+00
```

СОДЕРЖИМОЕ ФАЙЛА MSC_NASTRAN

```
Stress Limit in Compression (ST) = 5.6000E+01
$
$
       Stress Limit in Compression (SC) = 5.5000E+01
$
       Stress Limit in Compression (SS) = 4.1000E+01
$ Material Coordinate System ID (MCSID) = 0
$
$
MAT1
               1 10.3000
                                 0.33000 0.10100 1.00000 70.0000
                                                                      0.0+M
                                                                                 3
       3 56.0000 55.0000 41.0000
                                        0
+M
$
$
MATT1, 1, , , , , 1, , , +M4
+M4, , ,
$ The following TABLEM1 entry defines the temperature variation of CP:
$
TABLEM1
               2
                                                                                 5
                                                                          +M
                                                                                 6
+M
       5 29.5271 0.19944 185.946 0.21503 332.303 0.23131 590.739 0.25920+M
+M
       6 798.112 0.28468 ENDT
$
$
$ The material properties written to the following MAT4 bulk data entry are:
$
                      Material ID (MID) = 1
$
               Thermal Conductivity (K) = 0.0000E+00
$
                     Specific Heat (CP) = (TABLEM1 = 2)
$
                          Density (RHO) = 1.0100E-01
$
$
             1 0.0 1.00000 0.10100
MAT4
$
$
MATT4, 1, , 2
Ś
```

/COM	
/COM	MSC.Mvision v3 ANSYS (Revision 5) Material Data Export Utility
/COM	** MSC.Mvision Evaluator is confidential & proprietary **
/COM	** to The MacNeal-Schwendler Corp. Use of this file is **
/COM	** limited to uses permitted by the MSC license agreement. **
/COM	
/COM	Materials record(s) generated by MSC.Mvision
/COM	Number of material records generated = 1
/COM	Materials data exported using template = ANSYS_Release_5.Isotropic.Temper
/COM	ature
/COM	Materials data exported from database = /mvision/release_3.0/db/ demo_meta
/COM	ls.des
/COM	Additional database header info = M/VISION 2.0 Created by PDA on 1995-12
/COM	-01 at 15:49:53 Updated by PDA on 1995-12-01 at 15:49:53 System : Sun U
/COM	nix OS 4.1
/COM	Unit conversion = no conversion
/COM	
/COM	Material Record 1 of 1
/COM	Databank Keys for record 1:
/COM	Databank Record Number = 7
/COM	
/COM	User entered comments =
/COM	
/COM	

/COM	UNS= A97075		
/COM	DESIG= QQ-A-250/	25	
/COM	FORM= Clad sheet	:	
/сом	DIMS= T: 0.040-0	0.062 in	
/COM	EXPOS= -0- h		
/COM			
/COM	Units and Footnotes	for record 1:	
/COM	Field	Units	Footnote
/COM			
/COM	FILENAME		
/COM	MID		
/COM	EvsTemp	Msi	Primary value shown, Seconda
/COM	ry value: 9.8 Msi		
/COM	NUvsTemp		
/COM	RHO	lb/in^3	
/COM	ALPHAvsTemp	<pre>micro-in/in-deg_F; deg_F</pre>	
/COM	TREF	deg_F	
/COM	KvsTemp	BTU/hr-ft-deg_F;	
/COM	CPvsTemp	BTU/lb-deg_F; deg_F	
/COM			
/COM	Data Source for rec	cord 1:	
/COM	Field	Data Source	Expression
/COM			
/COM	FILENAME	*Modified By User*	
/COM	MID	*Modified By User*	
/COM	EvsTemp	Databank	E11T

/COM	NUvsTemp	Databank	NU12
/COM	RHO	Databank	DENS
/COM	ALPHAvsTemp	Databank	CTE11VSTEMP
/COM	TREF	Databank	TEMP
/COM	KvsTemp	*No Data*	CTC11VSTEMP
/COM	CPvsTemp	Databank	CPVSTEMP
/COM			
/COM Thi	s record will be	written as an isotropic,	temperature-dependent material.
/COM			
MP, EX,	2, 1.0300E+01		
/COM			
MP, PRXY	, 2, 3.3000E-01		
/COM			
/COM			
/COM For	temperature depe	ndent thermal expansion c	oefficients,
/COM ANS	YS requires a cur	ve of secant ALPX vs. tem	perature.
/COM Thi	s has been obtain	ed from the database figu	re of
/COM tan	gent ALPX vs. tem	perature using TREF = 7.0	000E+01
/COM			
/COM The	following table	shows the original data f	rom the database
/COM (fi	rst two columns),	and the computed secant	ALPX.
/COM An	extra point on th	e table has been added at	TREF = 7.0000E+01.
/COM			

```
/COM
                           Tangent ALPX
                                          Secant ALPX
            Temperature
/COM
            _____
                          _____
                                         _____
/COM
             0.0000E+00
                             1.2081E+01 1.2207E+01
                             1.2333E+01 1.2333E+01
/COM
      TREF = 7.0000E+01
/COM
                             1.2937E+01 1.2635E+01
             2.3750E+02
/COM
             3.0000E+02
                             1.3147E+01 1.2705E+01
/COM
                            1.3622E+01 1.2879E+01
           4.4151E+02
/COM
                             1.4178E+01
            6.2228E+02
                                        1.3092E+01
                             1.4635E+01 1.3278E+01
/COM
             7.9733E+02
/COM
/COM The following MPTEMP command gives the temperatures at which ALPX is defined:
/COM
MPTEMP, 1, 0.0000E+00, 7.0000E+01, 2.3750E+02, 3.0000E+02
MPTEMP, 5, 4.4151E+02, 6.2228E+02, 7.9733E+02
MPDATA, ALPX, 2, 1, 1.2207E+01, 1.2333E+01, 1.2635E+01, 1.2705E+01
MPDATA, ALPX, 2, 5, 1.2879E+01, 1.3092E+01, 1.3278E+01
MPTEMP
/COM
MP, REFT, 2, 7.0000E+01
/COM
MP, DENS, 2, 1.0100E-01
/COM
/COM The following MPTEMP command gives the temperatures at which C is defined:
/COM
MPTEMP, 1, 2.9527E+01, 1.8595E+02, 3.3230E+02, 5.9074E+02
MPTEMP, 5, 7.9811E+02
MPDATA, C, 2, 1, 1.9944E-01, 2.1503E-01, 2.3131E-01, 2.5920E-01
MPDATA, C, 2, 5, 2.8468E-01
MPTEMP
/COM
```

CPVSTEMP PEDIGREE DATA

UNS Unified Numbering System ID	A97075
CNAME Common Name	7075 Aluminum Alloy
DESIG Material Designation/ Specification	QQ-A-250/25
FORM Construction/ physical form	Clad sheet
TREAT Finish Heat Treatment/ Conditioning	T76
DIMS Characteristic dimensions	T: 0.040-0.06
DENS Weight density	0.1010 lb/in^3
TEMP Test Temperature	70 deg_F
TABLE Source table number	3.7.4.0(c4)
BOOK Source handbook	MIL-HDBK-5F
CH_NOTICE Change Notice number	1
BASIS Statistical basis	В

MVI320, Workshop 4, August 2001

ОТЧЕТ

DATE_EFF Effective date of data release or approval by MIL5 Coordination Group	90-11-01
DATE_MOD Date of entry or last modification in database	91-10-15
CPVSTEMP Temperature; Specific Heat	Btu/lb-deg_F; deg_F {CP at indicated temperature.}

<u>Row 2</u>

MVI320, Workshop 4, August 2001

ОТЧЕТ

CURVE SEGMENT 1

Temperature (deg F)	Specific Heat (BTU/Ib deg F)
29.5271	0.19944
185.946	0.21503
300	0.227713
332.303	0.231305
590.739	0.259197
798.112	0.28468

PLOT SET 1

<u>Row 2</u>

MVI320, Workshop 4, August 2001