Интернет Университет Суперкомпьютерных технологий

Учебный курс Введение в параллельные алгоритмы

Лекция 2 **Методы построения параллельных программ**

Якобовский М.В., д.ф.-м.н. Институт математического моделирования РАН, Москва

Предварительные замечания

- ... если для нас представляют интерес реально работающие системы, то требуется убедиться, (и убедить всех сомневающихся) в корректности наших построений
- ... системе часто придется работать в невоспроизводимых обстоятельствах, и мы едва ли можем ожидать сколько-нибудь серьезной помощи от тестов

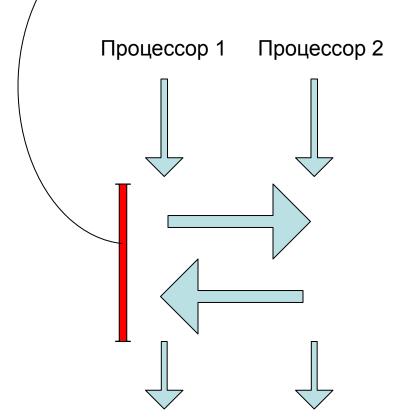
Dijkstra E.W. 1966

Содержание лекции

- Методы построения параллельных алгоритмов и их свойства:
 - Статическая балансировка
 - метод сдваивания
 - геометрический параллелизм
 - конвейерный параллелизм
 - Динамическая балансировка
 - коллективное решение
- Пример задачи, для параллельного решения которой необходимо создание качественно нового алгоритма

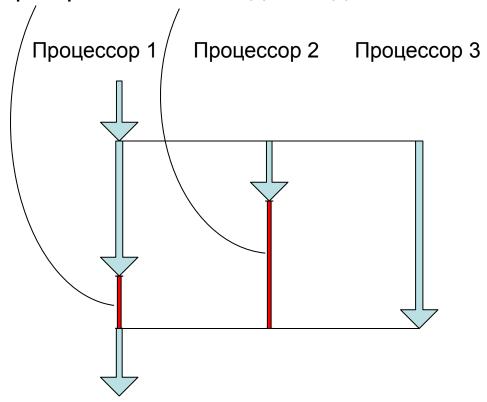
Хороший параллельный алгоритм

больши


- □ Обладает запасом внутреннего параллелизма
 - Есть возможность одновременного выполнения операций
- Допускает возможность равномерного распределения вычислительных операций между процессорами большим
- □ Обладает низким уровнеможакладных расходов

Накладные расходы

- Операции, отсутствующие в наилучшем последовательном алгоритме:
 - Синхронизация
 - Обмен данными
 - Дублирование операций
 - Новые операции


Обмен данными

□ Потери времени на передачу данных между процессами

Синхронизация

□ Потери времени на ожидание долго выполняющихся процессов

Дублирование операций

```
S=0;
S=0;
                          For(i=n1;i<n;i++)
For(i=0;i<n1;i++)
                             S += a[i];
   S += a[i];
                         Send(S)
Send(S)
              Recv(S1)
              Recv(S2)
              S=S1+S2
```

Вычисление всех факториалов до 8! включительно

Шаг	Процессор 1	Процессор 2	Процессор 3	Процессор 4
1	1 · 2	3 · 4	5.6	7 · 8
2	12 · 3	12 · 34	56 ·7	56.78
3	1234 · 5	1234 · 56	1234 · 567	1234 · 567
77-1		$T_{n=n/2}$	$(n) = \tau \log_{x} n$	8

$$T_1(n) = \tau_c(n-1)$$

$$S = \frac{n-1}{\log_2 n} \Big|_{\substack{n=8\\p=4}} = \frac{7}{3} < 4 = p$$

$$E_{p=4}(n=8) = \frac{7}{12}$$

Вычисление всех факториалов до 8! включительно

Шаг	Процессор 1	Процессор 2	Процессор 3	Процессор 4
1	1 · 2	3 · 4	5.6	7 · 8
2	12 · 3	12 · 34	56 ·7	56.78
3	1234 · 5	1234 · 56	1234 · 567	1234 · 567
$T_{p=n/2}(n) = \tau_c$	$\log_2 n$ $S = \frac{1}{2}$	$\frac{ n-1 }{\log_2 n} = \frac{7}{3}$	$\frac{7}{3}$ $<$ $4 = p$ E	$\frac{8}{p=4}(n-8)=\frac{7}{12}$

Шаг	Процессор 1	Процессор 2	Процессор 3	Процессор 4
1	1 2!	3 · 4	9 5.6	7.8
2	2 3!	3 4!	9 56 · 7	1 56 · 78
3	4 5!	5 6!	6 7!	7 8!

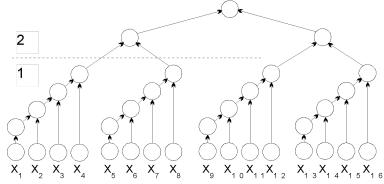
Метод сдванивания

Каскадная схема

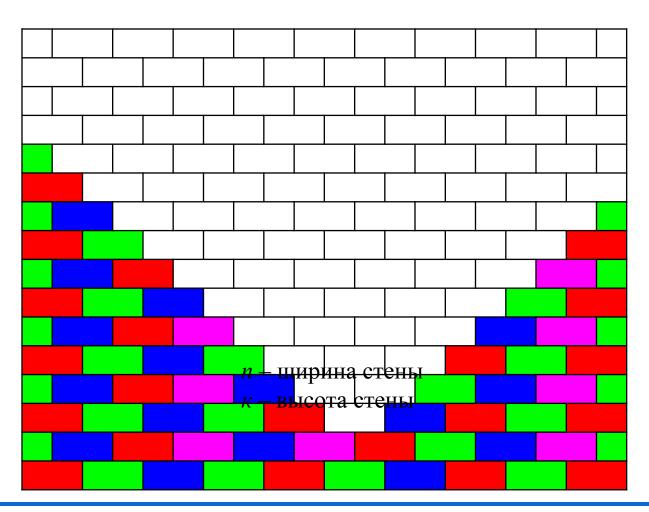
$$T_{p=n/2}(n) = \tau_c \log_2 n$$

$$S_{p=n/2}(n) = \frac{(n-1)}{\log_2 n} \quad E_{p=n/2}(n) \approx \frac{1}{\log_2 n}$$

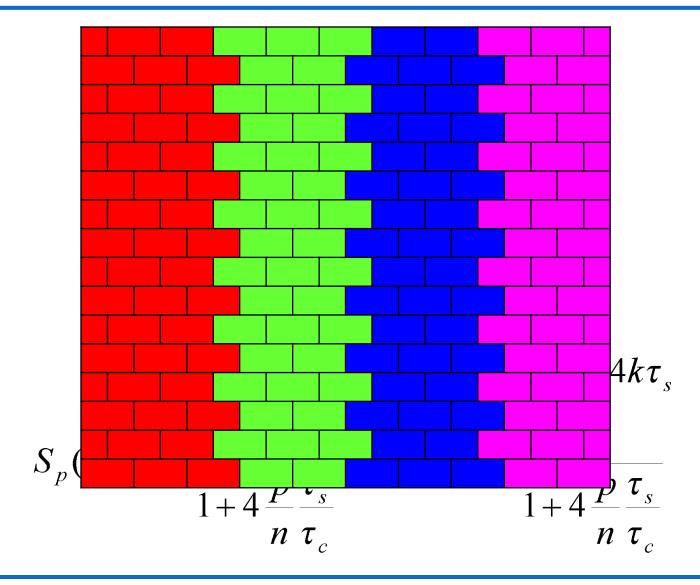
$$a_1 = 2 \quad a_3 = 4 \quad a_5 = a_6 \quad a_7 = a_8$$

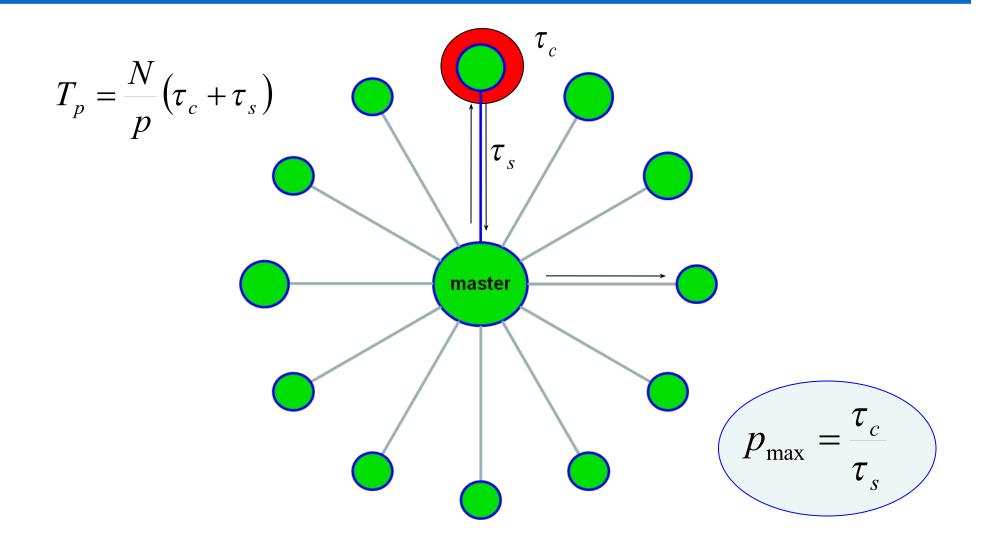

$$a_1 + a_2 = a_3 + a_4 \quad a_5 + a_6 = a_7 + a_8$$

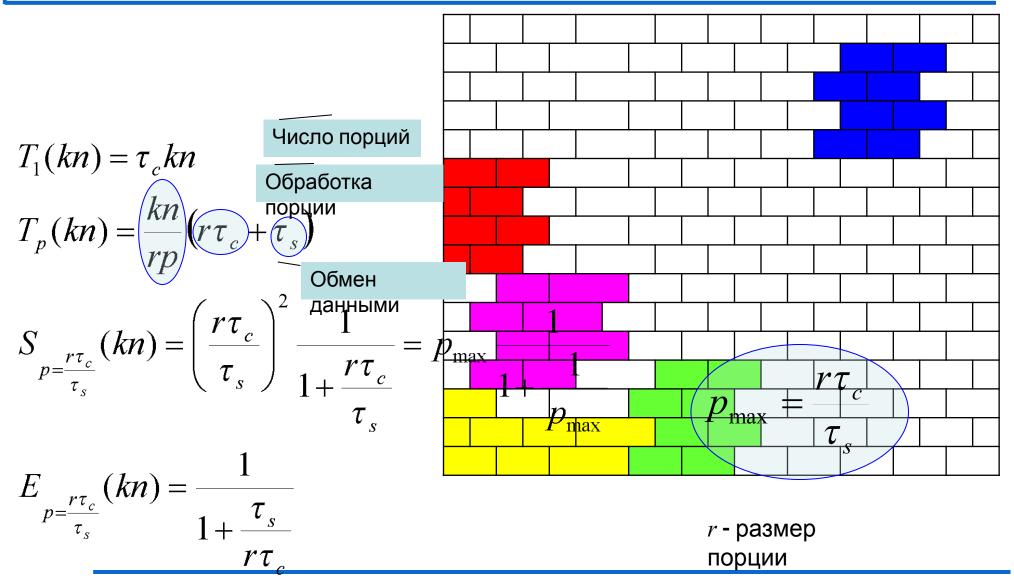
□ Модифицированная каскадная схема

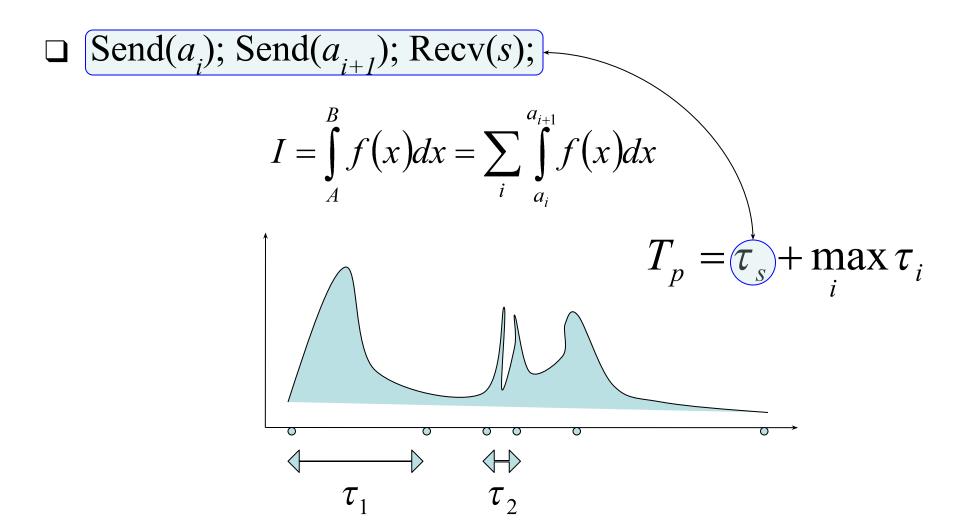

В.П.Гергель Основы параллельных вычислений, лекция 4, слайд 23

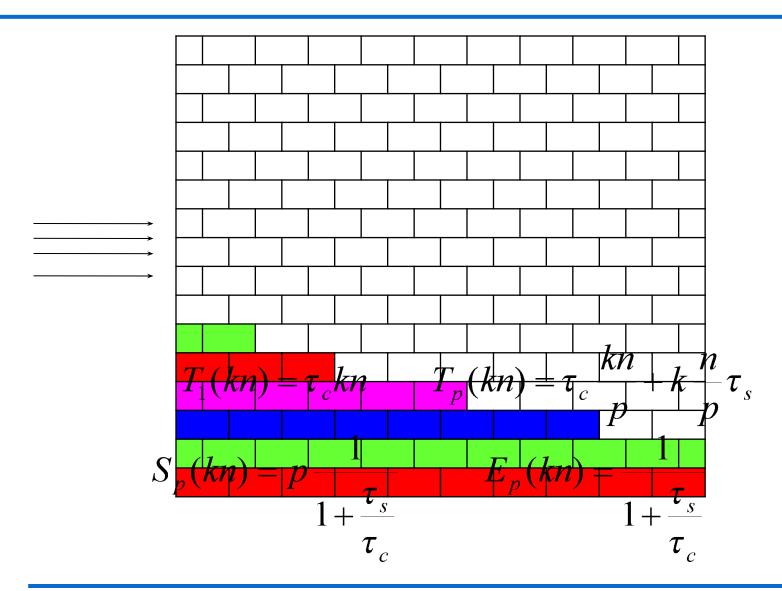
$$T_{p=\frac{n}{\log_2 n}}(n) \approx 2\tau_c \log_2 n$$


$$S_{p=\frac{n}{\log_2 n}}(n) \approx \frac{(n-1)}{2\log_2 n} \quad E_{p=\frac{n}{\log_2 n}}(n) \approx \frac{1}{2}$$


Стена Фокса


Метод геометрического параллелизма


Метод коллективного решения (укладка паркета)


Метод коллективного решения (укладка паркета)

Вычисление определенного интеграла

Метод конвейерного параллелизма

- Статическая и динамическая балансировка загрузки процессоров
 - Статическая балансировка
 - метод сдваивания
 - геометрический параллелизм
 - конвейерный параллелизм
 - Динамическая балансировка
 - коллективное решение

Определение суммы двух многоразрядных чисел

```
r=0;
for (i=0; i<=n; i++)
  d=a[i]+b[i]+r;
  c[i]=d%10;
  r = d/10;
c[i]=r;
```

+6934317835 3221643577 10155961412

$$T_1 = 4n\tau_c$$

«Параллельный» алгоритм

 Последовательное распространение разряда переноса на четырёх процессорах

> 1 100000000

99	99	99	99
			1
			100
		100	
	100		
100			
100	00	00	00

Спекулятивный алгоритм

□ Спекулятивное вычисление двух сумм

100000000

99	99	99	99	
			1	
99	99	99	100	+0
100	100	100		+1
100	00	00	00	

Спекулятивный алгоритм

```
r1=0;
r2=1;
for (i=0; i<=n1; i++)
   d1=a[i]+b[i]+r1;
   c1[i]=d1%10;
   r1=d1/10;
   d2=a[i]+b[i]+r2;
                            T'=8n_1\tau_c
   c2[i]=d2%10;
   r2=d2/10;
Recv(&r)
if (r) c=c1;
else c=c2;
```

Спекулятивный алгоритм

□ Спекулятивное вычисление двух сумм

$$T_1 = 4n\tau_c$$

$$T_p = 8\frac{n}{p}\tau_c$$

$$S_p = \frac{p}{2}$$

$$E_p = 50\%$$

99	99	99	99	
			1	
99	99	99	100	+0
100	100	100		+1
100	00	00	00	

Заключение

- Рассмотрены методы построения параллельных алгоритмов
- Рассмотрена проблема балансировки загрузки процессоров
- □ Представлен масштабируемый параллельный метод сложения многоразрядных чисел, основанный на неэффективном последовательном алгоритме

Вопросы для обсуждения

- В чем заключается проблема балансировки загрузки?
- В чем заключаются методы геометрического параллелизма, конвейерного параллелизма и коллективного решения?
- Чем определяются максимальные ускорения, достигаемые при применении этих методов?
- В чем отличие методов статической и динамической балансировки загрузки?

Контакты

Якобовский М.В.

д.ф.-м.н.,

зав. сектором

«Программного обеспечения многопроцессорных систем и вычислительных сетей»

Института математического моделирования

Российской академии наук

mail: mail: lira@imamod.rumail: lira@imamod.ru

web: web: http://lira.imamod.ru