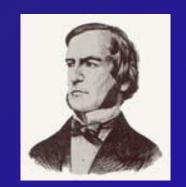
Информатика
Институт информатики, инноваций и бизнес-систем
Кафедра информатики, инженерной и компьютерной графики
Черкасова Евгения Анатольевна

Тема 9. Логические основы компьютеров

Логические основы компьютеров

- 1. Логические выражения и операции
- 2.Преобразование логических выражений
- 3. Логические элементы компьютера

1 Логические выражения и операции



Булева алгебра

Двоичное кодирование — все виды информации кодируются с помощью 0 и 1.

Задача – разработать оптимальные правила обработки таких данных.

Джордж Буль разработал основы алгебры, в которой используются только 0 и 1 (алгебра логики, булева алгебра).

Почему "логика"?

Результат выполнения операции можно представить как истинность (1) или ложность (0) некоторого высказывания.

Логические высказывания

Логическое высказывание — это повествовательное предложение, относительно которого можно однозначно сказать, истинно оно или ложно.

Высказывание или нет?

- □ Сейчас идет дождь.
- Жирафы летят на север.
- История интересный предмет.
- □ У квадрата 10 сторон и все разные.
- 🔲 Красиво!
- □ В городе N живут 2 миллиона человек.
- □ Который час?

Обозначение высказываний

A – Сейчас идет дождь.

В – Форточка открыта.

простые высказывания (элементарные)

Любое высказывание может быть ложно (0) или истинно (1).

Составные высказывания строятся из простых с помощью логических связок (операций) "и", "или", "не", "если ... то", "тогда и только тогда" и др.

А и В Сейчас идет дождь и открыта форточка.

А или не В Сейчас идет дождь или форточка закрыта.

если А, то В Если сейчас идет дождь, то форточка открыта.

не А и В Сейчас нет дождя и форточка открыта.

А тогда и только Дождь идет тогда и только тогда, когда открыта тогда, когда В форточка.

Операция НЕ (инверсия)

Если высказывание А истинно, то "не А" ложно, и

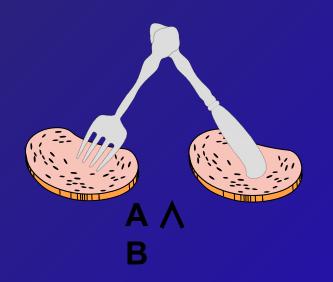
наоборот.

Α	не А
0	1
1	0

также: **A**, **not A** (Паскаль), **! A** (Си)

таблица истинности операции НЕ

Таблица истинности логического выражения X — это таблица, где в левой части записываются все возможные комбинации значений исходных данных, а в правой — значение выражения X для каждой комбинации.


Операция И (логическое умножение, конъюнкция)

Высказывание "А и В" истинно тогда и только тогда,

когда А и В истинны одновременно.

	Α	В	АиВ
0	0	0	0
1	0	1	0
2	1	0	0
3	1	1	1

также: **A·B**, **A ∧ B**, **A and B** (Паскаль), **A && B** (Си)

конъюнкция – от лат. conjunctio — соединение

Операция ИЛИ (логическое сложение, дизъюнкция)

Высказывание "А или В" истинно тогда, когда истинно А

или В, или оба вместе.

Α	В	А или В
0	0	0
0	1	1
1	0	1
1	1	1

также: **A+B**, **A V B**, **A or B** (Паскаль), **A || B** (Си)

дизъюнкция – от лат. disjunctio — разъединение

Операция "исключающее ИЛИ"

Высказывание "А Ф В" истинно тогда, когда истинно А

или **В**, но *не оба одновременно*.

Α	В	A B
0	0	0
0	1	1
1	0	1
1	1	0

также: **A xor B** (Паскаль), **A ^ B** (Си)

Свойства операции "исключающее ИЛИ"

$$A \oplus U = A$$

$$A \oplus A = 0$$

$$A \oplus 1 = A$$

$$(A \oplus B) \oplus B = ?$$

$$A \oplus B = A\overline{B} + \overline{A}B$$

Α	В	AB	ĀB	$A\overline{B} + \overline{A}B$	A ⊕ B
0	0	0	0	0	0
0	1	0	1	1	1
1	0	1	0	1	1
1	1	0	0	0	0

Импликация ("если ..., то ...")

Высказывание "**A** → **B**" истинно, если не исключено, что из **A** следует **B**.

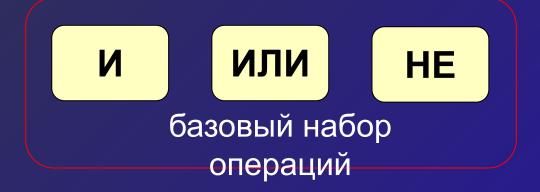
- А "Работник хорошо работает".
- В "У работника хорошая зарплата".

Α	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

$$A \rightarrow B = \overline{A} + B$$

Эквиваленция ("тогда и только тогда, ...")

Высказывание "А ↔ В" истинно тогда и только тогда, когда А и В равны.


Α	В	$A \leftrightarrow B$
0	0	_
0	1	
1	0	
1	1	1

$$A \leftrightarrow B = A \oplus B = AB + \overline{AB}$$

Базовый набор операций

С помощью операций **И, ИЛИ** и **НЕ** можно реализовать любую логическую операцию.

Логические формулы

Система имеет три датчика и может работать, если два из них исправны.

- А "Датчик № 1 неисправен".
- В "Датчик № 2 неисправен".
- С "Датчик № 3 неисправен".

Аварийный сигнал:

- Х "Неисправны два датчика".
- X "Неисправны датчики № 1 и № 2" или "Неисправны датчики № 1 и № 3" или "Неисправны датчики № 2 и № 3".

$$X = A \cdot B + A \cdot C + B \cdot C$$

логическая формула

Составление таблиц истинности

$$X = A \cdot B + \overline{A} \cdot B + \overline{B}$$

Α	В	A⋅B	$\overline{A} \cdot B$	\overline{B}	X
0	0	0	0	1	1
0	1	0	1	0	1
1	0	0	0	1	1
1	1	1	0	0	1

Логические выражения могут быть:

- **тождественно истинными** (всегда 1, тавтология)
- **тождественно ложными** (всегда 0, противоречие)
- вычислимыми (зависят от исходных данных)

Составление таблиц истинности

$$X = A \cdot B + A \cdot C + B \cdot C$$

Α	В	С	AB	AC	ВС	X
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	0	0	0
1	0	1	0	1	0	1
1	1	0	1	0	0	1
1	1	1	1	1	1	1

2 Преобразование логических выражений

Законы алгебры логики

название	для И	для ИЛИ	
двойного отрицания	$\overline{\overline{A}}$ =	= A	
исключения третьего	$A \cdot \overline{A} = 0$	$A + \overline{A} = 1$	
операции с константами	$A \cdot 0 = 0, A \cdot 1 = A$	A + 0 = A, A + 1 = 1	
повторения	$A \cdot A = A$	A + A = A	
поглощения	$A \cdot (A + B) = A$	$A + A \cdot B = A$	
переместительный	$A \cdot B = B \cdot A$	A+B=B+A	
сочетательный	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	A + (B + C) = (A + B) + C	
распределительный	$A+B\cdot C=(A+B)\cdot (A+C)$	$A \cdot (B + C) = A \cdot B + A \cdot C$	
правила де Моргана	$\overline{A \cdot B} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A} \cdot \overline{B}$	

Упрощение логических выражений

Шаг 1. Заменить операции ⊕→↔ на их выражения через **И**, **ИЛИ** и **HE**:

$$A \oplus B = A \cdot \overline{B} + \overline{A} \cdot B$$

$$A \rightarrow B = \overline{A} + B$$

Шаг 2. Раскрыть инверсию сложных выражений по формулам де Моргана:

Шаг 3. Используя законы логики, упрощать выражение, стараясь применять закон исключения третьего.

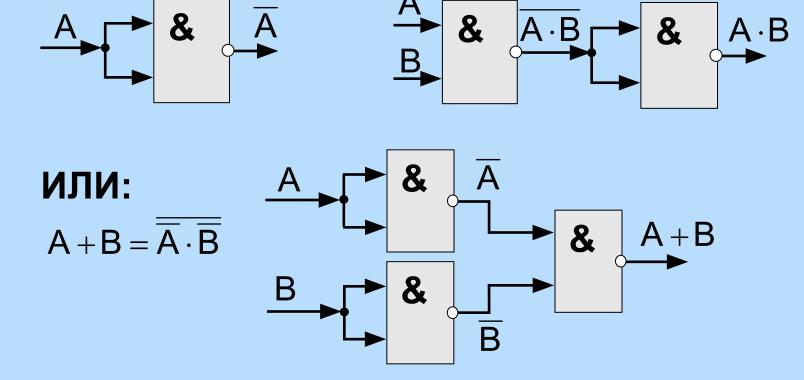
Упрощение логических выражений

$$Q = M \cdot X \cdot \overline{H} + \overline{M} \cdot X \cdot \overline{H} = (M + \overline{M}) \cdot X \cdot \overline{H} = X \cdot \overline{H}$$
 $X = (B \to A) \cdot (\overline{A} + B) \cdot (A \to C)$ раскрыли \to
 $= (B + A) \cdot (\overline{A} + B) \cdot (\overline{A} + C)$ формула де Моргана
 $= (B + A) \cdot \overline{A} \cdot \overline{B} \cdot (\overline{A} + C)$ распределительный
 $= (B \cdot \overline{A} + A \cdot \overline{A}) \cdot \overline{B} \cdot (\overline{A} + C)$ исключения третьего
 $= \overline{B} \cdot \overline{A} \cdot \overline{B} \cdot (\overline{A} + C)$ повторения
 $= \overline{B} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A} \cdot \overline{A}$

3 Логические элементы компьютера

Логические элементы компьютера

значок инверсии $A \cdot B$ HE И или $A \cdot B$ И-НЕ или-не

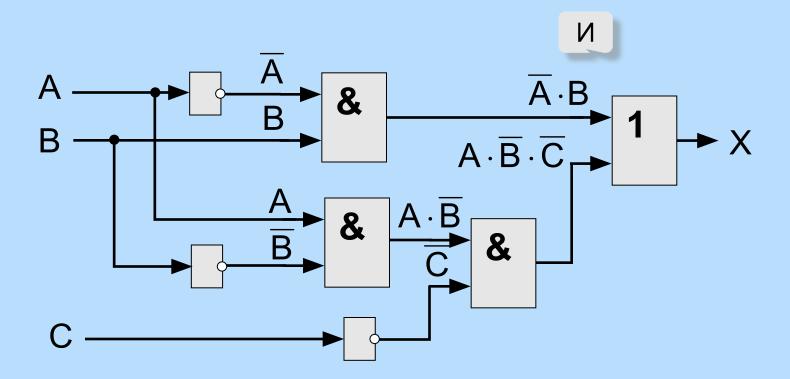


Логические элементы компьютера

Любое логическое выражение можно реализовать на элементах **И-НЕ** или **ИЛИ-НЕ**.

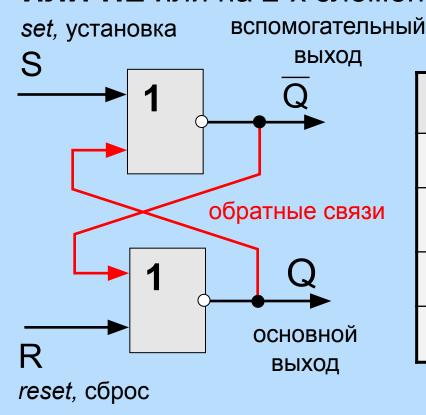
HE:
$$\overline{A} = \overline{A} + \overline{A} = \overline{A \cdot A}$$

$$\mathbf{M}: \ \mathbf{A} \cdot \mathbf{B} = \overline{\mathbf{A} \cdot \mathbf{B}}$$



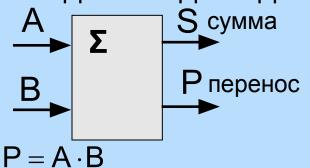
Составление схем

последняя операция - ИЛИ

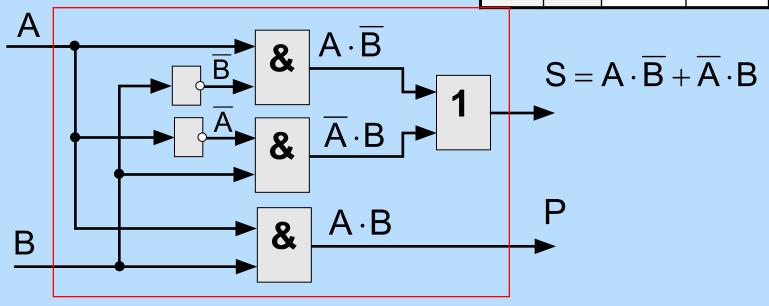

$$X = \overline{A} \cdot B + A \cdot \overline{B} \cdot \overline{C}$$

Триггер (англ. *trigger* – защёлка)

Триггер – это логическая схема, способная хранить 1 бит информации (1 или 0). Строится на 2-х элементах **ИЛИ-НЕ** или на 2-х элементах **И-НЕ**.

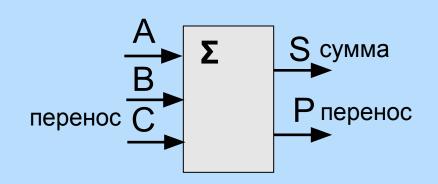


S	R	Q	\overline{Q}	режим
0	0	Q	Q	хранение
0	1	0	1	сброс
1	0	1	0	установка 1
1	1	0	0	запрещен


Полусумматор

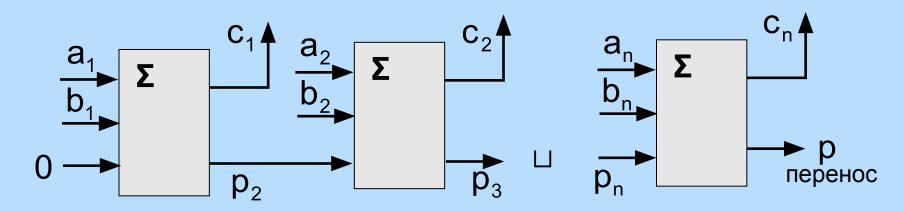
Полусумматор – это логическая схема, способная складывать два одноразрядных двоичных числа.

 $S = A \oplus B = A \cdot \overline{B} + \overline{A} \cdot B$


Α	В	Р	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Сумматор

Сумматор – это логическая схема, способная складывать два одноразрядных двоичных числа с переносом из предыдущего разряда.



Α	В	С	Р	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Многоразрядный сумматор

это логическая схема, способная складывать два n-разрядных двоичных числа.

Вопросы

Вопрос 1

Как записывается десятичное число 11 в двоичной системе счисления?

- A) 1111
- Б) 1101
- B) 1011
- Γ) 1001

Вопрос 3

Какие пары объектов находятся в отношении "объект - модель"?

- А) компьютер данные
- Б) компьютер его функциональная схема
- В) компьютер программа
- г) компьютер алгоритм

Вопрос 2

Операционная система – это ...

- A) программа, обеспечивающая управление базами данных
- Б) антивирусная программа
- В) программа, управляющая работой компьютера
- Г) система программирования

Вопрос 4

Задан полный путь к файлу C:\DOC\PROBA.TXT Каково расширение файла, определяющее его тип?

- A) C:\DOC\PROBA.TXT
- Б) DOC\PROBA.TXT
- B) PROBA.TXT
- Γ) TXT

Использование материалов презентации

Использование данной презентации, может осуществляться только при условии соблюдения требований законов РФ об авторском праве и интеллектуальной собственности, а также с учетом требований настоящего Заявления.

Презентация является собственностью авторов. Разрешается распечатывать копию любой части презентации для личного некоммерческого использования, однако не допускается распечатывать какую-либо часть презентации с любой иной целью или по каким-либо причинам вносить изменения в любую часть презентации. Использование любой части презентации в другом произведении, как в печатной, электронной, так и иной форме, а также использование любой части презентации в другой презентации посредством ссылки или иным образом допускается только после получения письменного согласия авторов.

