### Компьютерные сети, Интернет и мультимедиа технологии

## Основы сетей передачи данных

- Физическая передача данных по линиям связи
  - Характеристики физических каналов
  - Типы физических каналов
- Адресация узлов сети
- □ Коммутация
- Маршрутизация
- Мультиплексирование и демультиплексирование
- Разделяемая среда передачи данных
- Масштабируемость и расширяемость

### Характеристики физических каналов

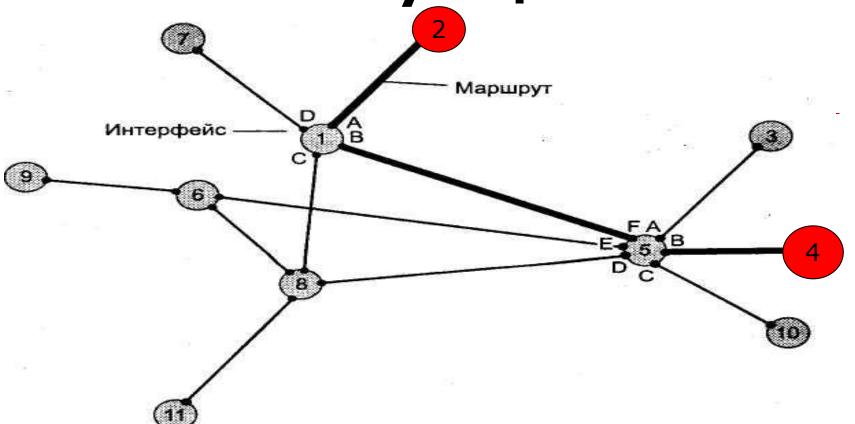
- □ Предложенная нагрузка это поток данных, поступающий от пользователя на вход сети. Предложенную нагрузку можно характеризовать скоростью поступления данных в сеть.
- □ Скорость передачи данных это фактическая скорость потока данных, прошедшего через сеть.
- Емкость канала связи, называемая также пропускной способностью, представляет собой максимально возможную скорость передачи информации по каналу.

#### Типы физических каналов

- Дуплексный канал обеспечивает одновременную передачу информации в обоих направлениях.
- □ Полудуплексный канал также обеспечивает передачу информации в обоих направлениях, но не одновременно, а по очереди. То есть в течение определенного периода времени информация передается в одном направлении, а в течении следующего периода — в обратном.
- Симплексный канал позволяет передавать информацию только в одном направлении. Часто дуплексный канал состоит из двух симплексных каналов.

- Адреса можно классифицировать следующим образом:
  - уникальный адрес используется для идентификации отдельных интерфейсов;
  - групповой адрес идентифицирует сразу несколько интерфейсов;
  - данные, направленные по широковещательному адресу, должны быть доставлены всем узлам сети;
  - в новой версии протокола определен адрес произвольной рассылки, где данные, посланные по адресу, должны быть доставлены не всем адресам данной группы, а любому из них.

- Адреса могут быть числовыми (например, 129.26.255.255 или 81.la.ff.ff) и символьными (site.domen.ru, willi-winki).
- Символьные адреса (имена) предназначены для запоминания людьми и поэтому обычно несут смысловую нагрузку.
- Интерфейс формально определенная логическая и физическая границы между взаимодействующими независимыми объектами.
  - Физический интерфейс определяется набором электрических связей и характеристиками сигналов.
  - Логический интерфейс набор информационных сообщений и правил обмена данными.


- Множество всех адресов, которые являются допустимыми в рамках некоторой схемы адресации, называется адресным пространством.
- Адресное пространство может иметь плоскую (линейную) организацию или иерархическую организацию.
  - При плоской организации множество адресов никак не структурировано. Примером плоского числового адреса является МАС-адрес, предназначенный для однозначной идентификации сетевых интерфейсов в локальных сетях.
  - При иерархической организации адресное пространство организовано в виде вложенных друг в друга подгрупп, которые, последовательно сужая адресуемую область, в конце концов, определяют отдельный сетевой интерфейс.
  - Типичными представителями иерархических числовых адресов являются сетевые IP- и IPX-адреса. В них поддерживается двухуровневая иерархия, адрес делится на старшую часть — номер сети и младшую — номер узла.

- Для преобразования адресов из одного вида в другой используются специальные вспомогательные протоколы, которые называют протоколами разрешения адресов.
- Проблема установления соответствия между адресами различных типов может решаться централизованными и распределенными средствами.
  - При централизованном подходе в сети выделяется один или несколько компьютеров, в которых хранится таблица соответствия имен различных типов. Все остальные компьютеры обращаются к серверу имен с запросами, чтобы по символьному имени найти числовой номер необходимого компьютера.
  - При распределенном подходе каждый компьютер сам хранит все назначенные ему адреса разного типа. Все компьютеры сети сравнивают содержащийся в запросе адрес с собственным. Тот компьютер, у которого обнаружилось совпадение, посылает ответ, содержащий искомый аппаратный адрес. Такая схема использована в протоколе разрешения адресов ( ARP) стека TCP/IP.

### Коммутация

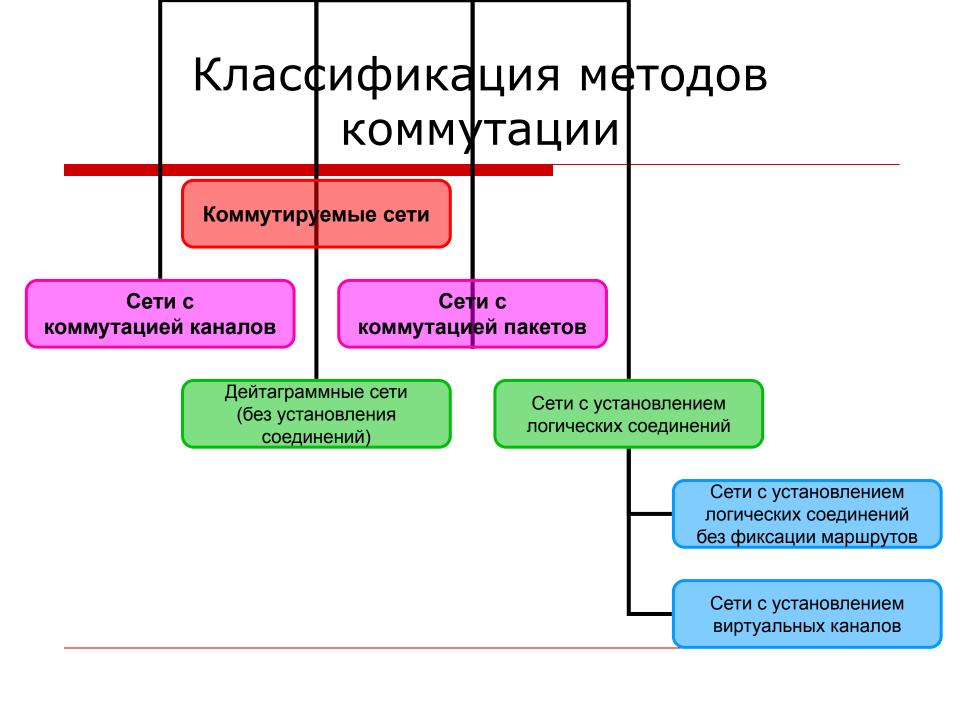
- Каким способом передавать данные между конечным узлами (пользователями)?
- □ Коммутация это соединение конечных узлов через сеть транзитных узлов.
  - коммутация пакетов (данные разделяются на небольшие порции(пакеты), которые самостоятельно перемещаются по сети благодаря наличию адреса конечного узла в заголовке пакета).
- Маршрут –последовательность узлов, лежащих на пути от отправителя к получателю.

Коммутация



В данной сети узлы 2 и 4, непосредственно между собой не связанны и вынуждены передавать данные через транзитные узлы, например, узлы 1 и 5.

Узел 1 должен выполнить передачу данных между своими интерфейсами A и B, а узел 5 — между интерфейсами F и B. В данном случае **маршрутом** является последовательность: **2-1-5-4**,


где 2 — узел-отправитель, 1 и 5 — транзитные узлы, 4 — узел-получатель.

### Коммутация

- Информационным потоком называется непрерывная последовательность данных, объединенных набором общих признаков.
- Весь поток входящих в транзитный узел данных разделяется на подпотоки, каждый из которых передается на интерфейс, соответствующий маршруту продвижения данных.

#### Задачи коммутации

- определение потоков и соответствующих маршрутов;
- фиксация маршрутов в таблицах сетевых устройств;
- распознавание потоков и передача данных между интерфейсами одного устройства;
- мультиплексирование/демультиплексиров ание потоков;
- разделение среды передачи данных.



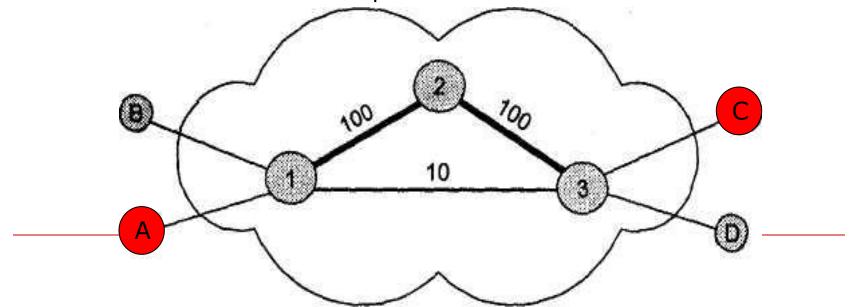
# Дейтаграммная передача в коммутируемых сетях

- □ Дейтаграммный способ передачи данных основан на том, что все передаваемые пакеты обрабатываются независимо друг от друга (каждый пакет рассматривается сетью как независимая единица передачи дейтаграмма).
- Функционирует на основе таблиц коммутации, содержащих набор адресов назначения и адресную информацию, определяющую следующий по маршруту (транзитный или конечный) узел.
- □ В одной и той же сетевой технологии могут быть задействованы разные способы передачи данных.
- □ Пример: Для передачи данных между отдельными сетями, составляющими Интернет, используется дейтаграммный протокол IP.
- □ Недостатки: При таком методе нет гарантии доставки пакета (доставка с максимальными усилиями).

#### Логическое соединение в коммутируемых сетях

- Процедура обработки данных определяется не для отдельного пакета, а для всего множества пакетов, передаваемых в рамках каждого логического соединения.
- Пакеты, принадлежащие одному и тому же соединению, имеющие одни и те же адреса отправления и назначения, могут перемещаться по разным независимым друг от друга маршрутам.
- Пример: протокол ТСР устанавливает логические соединения без фиксации маршрута.

# Виртуальный канал в коммутируемых сетях


- Если в число параметров соединения входит маршрут, то все пакеты, предаваемые в рамках данного соединения, должны проходить по указанному пути.
- □ Такой единственный заранее проложенный фиксированный маршрут, соединяющий конечные узлы в сети с коммутацией пакетов, называют виртуальным каналом.
- Функционируют на основе таблиц коммутации, которые гораздо короче, чем в дейтаграммных сетях (содержат записи не обо всех возможных адресах назначения, а только о виртуальных каналах) и каждый пакет помечается меткой (идентификатор виртуального канала).
- □ Пример: сети ATM и Frame Relay поддерживают виртуальные каналы и входят в состав Интернета.

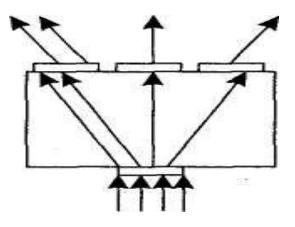
- Задача маршрутизации включает в себя две подзадачи:
  - определение маршрута;
  - оповещение сети о выбранном маршруте.
- □ Определить маршрут это значит выбрать последовательность транзитных узлов и их интерфейсов, через которые надо передавать данные, чтобы доставить их адресату.

- Между парой взаимодействующих сетевых интерфейсов существует множество путей.
- Выбор останавливают на одном оптимальном маршруте. В качестве критериев оптимальности могут выступать:
  - пропускная способность;
  - загруженность каналов связи;
  - количество промежуточных транзитных узлов;
  - надежность каналов и транзитных узлов

- Маршрут может определяться
  эмпирически («вручную»)
  администратором сети. Однако
  эмпирический подход к определению
  маршрутов мало пригоден для большой сети со сложной топологией.
- В этом случае используются
   автоматические методы определения
   маршрутов. Для этого конечные узлы и
   другие устройства сети оснащаются
   специальными программными средствами.

- Для передачи, трафика между конечными узлами A и C существуют два альтернативных маршрута: **A-1-2-3-C и A-1-3-C.** По топологии выбор очевиден маршрут A-1-3-C, который имеет меньше транзитных узлов.
  - Каналы 1-2 и 2-3 обладают пропускной способностью 100 Мбит/с, а канал 1-3 только 10 Мбит/с. Если мы хотим, чтобы информация передавалась по сети с максимально возможной скоростью, то нам нужно выбрать маршрут А-1-2-3-С, хотя он и проходит через большее количество промежуточных узлов. То есть можно сказать, что маршрут А-1-2-3-С является «более коротким».




## Мультиплексирование и демультиплексирование

- Мультиплексирование –это объединение нескольких отдельных потоков в общий (суммарный, агрегированный).
- □ Демультиплексирование это разделение суммарного потока на несколько составляющих его потоков.

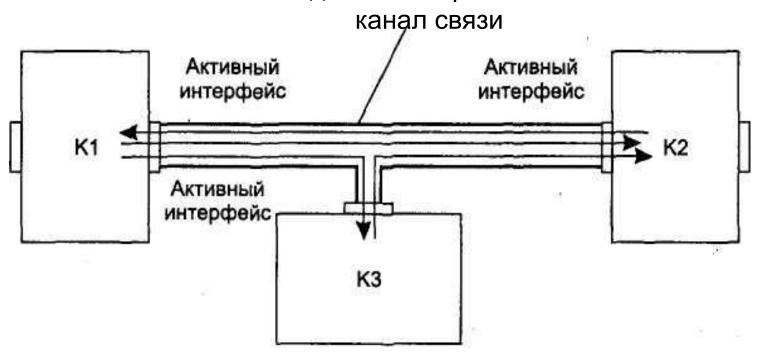
# Мультиплексирование и демультиплексирование



**Мультиплексор -** коммутатор, который имеет несколько входных интерфейсов и один выходной



**Демультиплексор -** коммутатор, который имеет один входной интерфейс и несколько выходных


#### Разделяемая среда передачи данных

- Проблема совместного использования канала несколькими интерфейсами разрешается разделением каналов связи между интерфейсами.
- Совместно используемый несколькими интерфейсами физический канал называют разделяемым (разделяемая среда передачи данных).
- Разделяемая среда передачи данных часто используется в локальных сетях (технология Ethernet). Удешевление сети, но потеря производительности.

## Разделяемая среда передачи данных

Передача данных в разные стороны, но только попеременно.

Разделяемый физический



#### Разделяемая среда передачи данных

- □ Разделяемой средой называется физическая среда передачи данных (коаксиальный кабель, витая пара, оптическое волокно, радиоволны), к которой непосредственно подключено несколько конечных узлов сети и которой они могут пользоваться только по очереди.
- □ В основе сетевых технологий Ethernet, FDDI, Token Ring лежит принцип разделяемой среды.
- Сегодня существует интерес к разделяемым средам, о чем свидетельствуют
  - домашние проводные сети,
  - персональные радиосети новой технологии Bluetooth, предназначенные для объединения всех «компьютеризированных» устройств личного пользования (телевизор, мобильный телефон),
  - локальные сети Radio Ethernet, применяемые для подключения пользователей к Интернету в аэропортах, вокзалах и других местах скопления мобильных пользователей.

## Масштабируемость и расширяемость

- Масштабируемость означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается.
- Расширяемость означает возможность добавления отдельных компонентов сети (пользователей, компьютеров, приложений, служб), наращивания длины сегментов кабелей и замены существующей аппаратуры более мощной.

#### Ethernet – пример стандартной сетевой технологии

□ Топология. В стандарте Ethernet строго зафиксирована топология — общая шина.



 Способ коммутации. В технологии Ethernet используется дейтаграммная коммутация пакетов.

### Ethernet – пример стандартной сетевой технологии

- □ Полудуплексный способ передачи. Разделяемая среда Ethernet представляет собой полудуплексный канал передачи. Сетевой адаптер выполняет операции передачи данных и их приема попеременно.
- Адресация. Каждый сетевой адаптер, имеет уникальный аппаратный адрес (так называемый МАС-адрес). Адрес Ethernet является плоским числовым адресом, иерархия здесь не используется.

#### Выводы:

- В сетях соединение пользователей осуществляется путем коммутации через сеть транзитных узлов.
- При этом должны быть решены следующие задачи:
  - определение потоков данных и маршрутов для них,
  - мультиплексирование и демультиплексирование потоков.

#### Контрольные вопросы и задания

- К какому типу можно отнести следующие адреса:
  - www.olifer.net;
  - 20-34-a2-00-c2-27;
  - **128.145.23.170.**
- Объясните различия между разделением среды передачи данных и мультиплексированием.
  - Какие из утверждений о маршруте верны:
    - Маршруты определяются администратором и заносятся вручную в специальные таблицы.
    - Маршрут это последовательность узлов, лежащих на пути от отправителя к получателю.
    - Из нескольких маршрутов всегда выбирается оптимальный.
    - Таблица маршрутов строится автоматически сетевым программно-аппаратным обеспечением.
    - Все предыдущие утверждения верны.
    - Все предыдущие утверждение неверны.

### Словарь

|   | Компьютерная сеть              |   | ————————————————————————————————————— |
|---|--------------------------------|---|---------------------------------------|
|   | Мэйнфрейм                      |   | Брандмауэр                            |
|   | Коммутация                     |   | Маршрутизатор                         |
|   | Коммутация каналов             |   | Хост-машина                           |
|   | Коммутация пакетов             |   | Провайдер                             |
|   | Сетевые технологии             |   | Адресное пространство                 |
|   | Конвергенция сетей             |   | Информационный поток                  |
|   | Локальная сеть                 |   | Маршрут                               |
|   | Глобальная сеть                |   | Маршрутизация<br>Маршрутизация        |
|   | Сетевая плата                  |   | Мультиплексирование                   |
|   | Концентратор                   |   | Демультиплексирование                 |
|   | Коммутатор                     |   | Мультиплексор                         |
|   | Витая пара                     |   | Демультиплексор                       |
|   | Сервер                         |   | Разделяемая среда передачи данных     |
|   | Модем                          |   | Масштабируемость                      |
|   | Протокол                       |   | Расширяемость                         |
|   | Мост                           |   | Дейтаграмма                           |
|   | Виртуальный канал              |   | Локальный адрес                       |
|   | Топология                      |   | Сетевой адрес                         |
|   | Архитектура сети               |   | Символьный адрес                      |
|   | Модель OSI                     |   | URL-адрес                             |
|   | МодельТСР/ІР                   |   | Групповые адреса                      |
|   | Стек протоколов                |   | Маска подсети                         |
|   | Доменная система имен (DNS)    |   | Технология CIDR                       |
| _ | Herreman energia milen (2.116) |   | Шифрование                            |
|   |                                |   | Аутентификация                        |
|   |                                |   | Авторизация                           |
|   |                                |   | Аудит                                 |
|   |                                | _ | · · / ল···                            |