
Inheritance

Java Core

IT Academy
05/2016

Agenda

• Java OOPs Concepts
• Abstract class
• Interface
• Inheritance in Java
• Polymorphism
• this, super
• Object. Override
• Final

Java OOPs Concepts

Object
Any entity that has state and behavior is known as an object. For example:
chair, pen, table, keyboard, bike etc. It can be physical and logical.

Class
Collection of objects is called class. It is a logical entity.

Inheritance
When one object acquires all the properties and behaviors of parent object
i.e. known as inheritance. It provides code reusability. It is used to achieve
runtime polymorphism.

Polymorphism
When one task is performed by different ways i.e. known as polymorphism.
For example: cat speaks meow, dog barks woof etc.

Java OOPs Concepts

Abstraction
Hiding internal details and showing functionality is known as an
abstraction. For example: phone call, we don't know the internal
processing.

•In java, we use abstract class and interface to achieve abstraction.

Encapsulation
Binding (or wrapping) code and data together into a single unit is known as
encapsulation. For example: capsule, it is wrapped with different
medicines.

•A java class is the example of encapsulation. Java bean is the fully
encapsulated class because all the data members are private here.

A class must be declared abstract when we need to forbid creating
instances of this class.

Abstract class may has one or more abstract methods.

A method is declared abstract when it has a method heading, but no
body – which means that an abstract method has no implementation
code inside curly braces like normal methods do.

▪ The derived class must provide a definition method;

▪ The derived class must be declared abstract itself.

A non abstract class is called a concrete class.

Abstract Classes

/* The Figure class must be declared as abstract because it
contains an abstract method */
public abstract class Figure {
 /* because this is an abstract
 method the body will be blank */
 public abstract double getArea();
}

public class Circle extends Figure {
 private double radius;
 public Circle (double radius) {
 this.radius = radius;}
 public double getArea() {

return (3.14 * (radius * 2)); }
}

Abstract Classes

public class Rectangle extends Figure {
 private double length, width;

 public class Rectangle(double length, double width) {
 this.length = lengt;
 this.width = width;
 }

 public double getArea() {
return length * width;

 }
}

Abstract Classes

• An interface is a reference type in Java, it is similar to class, it is
a collection of abstract methods. A class implements an interface,
thereby inheriting the abstract methods of the interface.

• Along with abstract methods an interface may also contain
constants, default methods, static methods, and nested types.
Method bodies exist only for default methods and static methods.

• An interface is essentially a type that can be satisfied by any
class that implements the interface.

• Any class that implements an interface must satisfy 2 conditions
▪ It must have the phrase "implements Interface_Name" at the

beginning of the class definiton;
▪ It must implement all of the method headings listed in the

interface definition.

Interfaces

public interface Dog {
public boolean barks();
public boolean isGoldenRetriever();

}

public class SomeClass implements Dog {
public boolean barks() {
 // method definition here
}
public boolean isGoldenRetriever() {
 // method definition here
}

}

Interfaces

Java 8 enables us to add non-abstract method

implementations to interfaces by utilizing the default

keyword. This feature is also known as Extension Methods.

For example:
interface Formula {
 double calculate(int a);

 default double sqrt(int a) {
 return Math.sqrt(a);
 }
}

Default Methods for Interfaces

• Besides the abstract method calculate the interface Formula
also defines the default method sqrt. Concrete classes only
have to implement the abstract method calculate. The default
method sqrt can be used out of the box.

Formula formula = new Formula() {
 @Override
 public double calculate(int a) {

return sqrt(a * 100);
 }

};

formula.calculate(100); // 100.0
formula.sqrt(16); // 4.0

Default Methods for Interfaces

Assignment operator. What will be done ?

int num=1;
double data = 1.0;
data = num; // num = data; ???

class Aclass {
 int field1 = 10;

}

class Bclass extends Aclass {
 int field2 = 20;

}

Aclass a = new Aclass();
Bclass b = new Bclass();
a = b; // b = a; ???

Inheritance

Inheritance
public class Circle {
private double radius;

 // Constructors
 public Circle() {

this.radius = 1.0;
 }
 public Circle(double radius) {

this.radius = radius; }

 // Getters and Setters
 // Return the area of this Circle
 public double getArea() {
 return radius * radius * Math.PI;
 }
}

Inheritance

public class Cylinder extends Circle {
private double height;

 // Constructors
 public Cylinder() {
 super(); // invoke superclass' constructor Circle()
 this.height = 1.0;
 }
 public Cylinder(double height) {
 super(); // invoke superclass' constructor Circle()
 this.height = height;
 }
 public Cylinder(double height, double radius) {
 // invoke superclass' constructor Circle(radius)
 super(radius);
 this.height = height;
 }

Inheritance

 // Getter and Setter
 // Return the volume of this Cylinder
 public double getVolume() {
 // Use Circle's getArea()
 return getArea() * height;
 }

 // Describle itself
 public String toString() {
 return "This is a Cylinder";
 }
}

public class ClassA {
public int i = 1;
public void m1() {

System.out.println("ClassA, metod m1, i = " + i);
}

public void m2() {
System.out.println("ClassA, metod m2, i = " + i);

}
public void m3() {

System.out.print("ClassA, metod m3,
runnind m4():");

m4(); }
 public void m4() {
 System.out.println("ClassA, metod m4");

}
}

Inheritance

public class ClassB extends ClassA {

 public double i = 1.1;

 public void m1() {

System.out.println("ClassB, metod m1, i= " + i);

 }

 public void m4() {

System.out.println("ClassB, metod m4");

 }

}

Automatically added default constructor.

Inheritance

public class ApplAB {
public static void main(String[] args) {

 System.out.println("The Start.");

 ClassA a = new ClassA();
 System.out.println("Test ClassA.");
 a.m1();
 a.m2();
 a.m3();
 a.m4();

Inheritance

 ClassB b = new ClassB();
 System.out.println("Test ClassB.");
 b.m1();
 b.m2();
 b.m3();
 b.m4();

 ClassA b0 = new ClassB();
 System.out.println("Test_0 ClassB.");
 b0.m1();
 b0.m2();
 b0.m3();
 b0.m4();
 System.out.println("The End."); } }

Inheritance

The Start.
Test ClassA.
ClassA, metod m1, i=1
ClassA, metod m2, i=1
ClassA, metod m3, runnind m4(): ClassA, metod m4
ClassA, metod m4
Test ClassB.
ClassB, metod m1, i=1.1
ClassA, metod m2, i=1
ClassA, metod m3, runnind m4(): ClassB, metod m4
ClassB, metod m4
Test_0 ClassB.
ClassB, metod m1, i=1.1
ClassA, metod m2, i=1
ClassA, metod m3, runnind m4(): ClassB, metod m4
ClassB, metod m4
The End.

Inheritance

What is wrong in the code ?

Java Classes

package com.softserve.train;

public class Parent {

 int f() {
 return 1;
 }

 public int useF() {
 return f();
 }
}

package com.softserve.train2;

import
com.softserve.train.Parent;

public class Child extends
Parent {

 int f() {
 return 2;
 }
}

Let's check it
package com.samples;

import com.softserve.train2.*;

public class OOPSamples {
 public static void main(String... args)
{
 Child child = new Child();
 System.out.println(child.useF());
 }
}

public abstract class ACar {
 private double maxSpeed;

 public double getMaxSpeed() {
 return maxSpeed;
 }

 public void setMaxSpeed(double maxSpeed) {
 this.maxSpeed = maxSpeed;
 }

 abstract void carRides();
}

Polymorphism

public class BmwX6 extends ACar {
 public BmwX6() { }

 @Override
 public void carRides() {
 setMaxSpeed(200);
 System.out.println("Car Rides");
 workedEngine();
 workedGearBox();
 }
 public void workedEngine() {
 System.out.println("BmwX6: Engine Running

on Petrol.");
 System.out.println("BmwX6: Max Speed: " +

getMaxSpeed());
 }

Polymorphism

 private void workedGearBox() {

 System.out.println("BmwX6: Worked GearBox.");

 }

 public void lightsShine() {

 System.out.println("BmwX6: Halogen Headlights.");

 }

}

inheritance of private fields and methods ?

Polymorphism

public class BmwX6mod extends BmwX6 {
 public BmwX6mod() {
 super();
 }
 @Override
 public void workedEngine() {
 System.out.println("BmwX6mod: Engine

Running on Diesel.");
 System.out.println("BmwX6mod: Max Speed: " +
 getMaxSpeed());
 }
 @Override
 public void lightsShine() {
 System.out.println("BmwX6mod: Xenon Headlights.");
 super.lightsShine();
 }
}

Polymorphism

public class Appl {
 public static void main(String[] args) {
 ACar carX6 = new BmwX6();

 carX6.carRides();
 ((BmwX6)carX6).lightsShine();

 ACar carX6mod = new BmwX6mod();
 carX6mod.carRides();
 ((BmwX6)carX6mod).lightsShine();

 BmwX6 carX6mod2 = new BmwX6mod();

 carX6mod2.carRides();
 carX6mod2.lightsShine();
 }
}

Polymorphism

Class Diagram. Visibility and scope

Symbol Access

+ public

- private

protected

Class Diagram

Class Diagram

• Our class diagram has three kinds of relationships.

• association -- a relationship between instances of the two classes.
There is an association between two classes if an instance of one
class must know about the other in order to perform its work. In a
diagram, an association is a link connecting two classes.

• aggregation -- an association in which one class belongs to a
collection. An aggregation has a diamond end pointing to the part
containing the whole. In our diagram, Order has a collection of
OrderDetails.

• generalization -- an inheritance link indicating one class is a
superclass of the other. A generalization has a triangle pointing to
the superclass. Payment is a superclass of Cash, Check, and Credit.

Class Diagram. Multiplicities

Multiplicities Meaning

0..1
zero or one instance.
The notation n . . M indicates n to m
instances.

0..* or * no limit on the number of instances
(including none).

1 Exactly one instance

1..* at least one instance

Composition and aggregation

Dependencies and constraints

Class Diagram. Interfaces and stereotypes

final
• A final variable can only be assigned once and its value
cannot be modified once assigned.

Constants are variables defined
final double RADIUS = 10;

• A final method cannot be overridden by subclasses
public final void myFinalMethod() {...}

• A final class cannot extend
public final class MyFinalClass {...}

Practical tasks
1. Create interface Animal with methods voice() and feed(). Create two

classes Cat and Dog, which implement this interface. Create array of
Animal and add some Cats and Dogs to it. Call voice() and feed()
method for all of it

2. Create next structure. In abstract class
Person with property name, declare
abstract method print(). In other
classes in body of method print()
output text “I am a …”. In class Staff
declare abstract method salary(). In
each concrete class create constant
TYPE_PERSON. Output type of person
in each constructors. Create array of
Person and add some Teachers,
Cleaners and Students to it. Call
method print() for all of it. Call method
salary() for all Teachers and Cleaner

HomeWork (online course)

• UDEMY course "Java Tutorial
for Complete Beginners":
https://www.udemy.com/java
-tutorial/

• Complete lessons 26-31:

Homework
1. Develop abstract class Bird with attributes feathers and

layEggs and an abstarct method fly(). Develop classes
FlyingBird and NonFlyingBird. Create class Eagle, Swallow,
Penguin and Chicken.

Create array Bird and add different birds to it.
Call fly() method for all
of it. Output the
information about
each type of
created bird.

Homework

2. Create an interface to the method calculatePay(), the base class
Employee with a string variable employeeld. Create two classes
SalariedEmployee and ContractEmployee, which implement interface
and are inherited from the base class.
• Describe hourly paid workers in the relevant classes (one of the

children), and fixed paid workers (second child).
• Describe the string variable socialSecurityNumber in the class

SalariedEmployee .
• Include a description of federalTaxIdmember in the class of

contractEmployee .
• The calculation formula for the "time-worker“ is: "the average

monthly salary = hourly rate * number of hours worked"

Homework

• For employees with a fixed payment the formula is: "the average
monthly salary = fixed monthly payment“

• Create an array of employees and add the employees with different
form of payment.

• Arrange the entire sequence of workers descending the average
monthly wage. Output the employee ID, name, and the average
monthly wage for all elements of the list.

USA HQ
Toll Free: 866-687-3588
Tel: +1-512-516-8880

Ukraine HQ
Tel: +380-32-240-9090

Bulgaria
Tel: +359-2-902-3760

Germany
Tel: +49-69-2602-5857

Netherlands
Tel: +31-20-262-33-23

Poland
Tel: +48-71-382-2800

UK
Tel: +44-207-544-8414

EMAIL
info@softserveinc.com

WEBSITE:
www.softserveinc.com

The end

