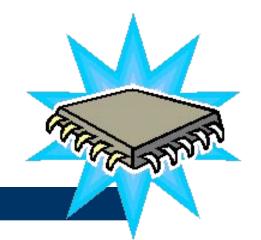
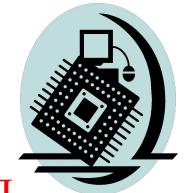
Измерение информации


Усольцева Э.М-А. преподаватель информатики ГОУ НПО «Качканарское ПУ»

Алфавитный подход к измерению информации

Центральный процессор (ЦП) -

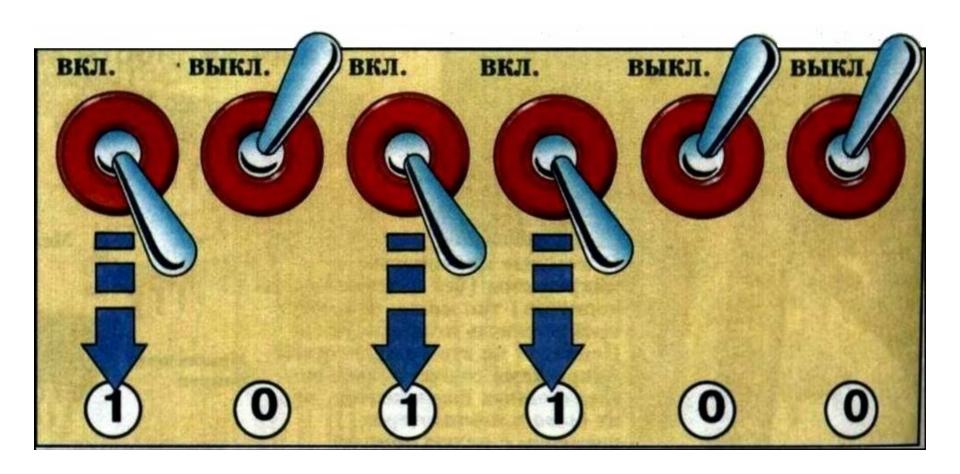
управляет работой ПК и преобразует информацию («мозг» ПК)


ЦП может представлять собой один кремниевый кристалл.

В таких случаях ЦП называют микропроцессором (МП).

Компьютер работает от электрической сети в которой может быть реализована система, основанная на 2-х состояниях:

Есть ток – нет тока


Есть напряжение – нет напряжения

На этом и базируется работа ЦП

0 — нет тока, «ложь»

1 - есть ток, «истина»

0 или 1 = 1 бит информации

Вопрос:

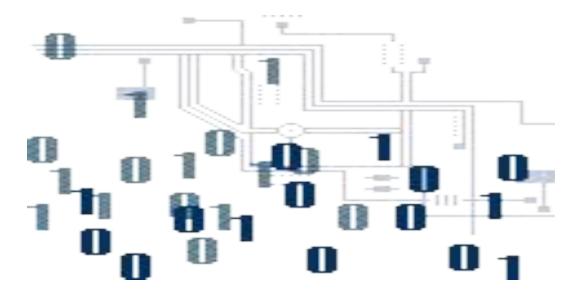
Хватит ли 0 и 1, чтобы закодировать все символы, которые мы вводим в компьютер с клавиатуры?

Код	Сим- вол	Код	Сим- вол	Код	Сим- вол	Код	Сим- вол	
00100000	пробел	00110000	0	01000000	a	01010000	P	
00100001	1	00110001	1	01000001	Ā	01010001	Q	
00100010	"	00110010	2	01000010	В	01010010	Ř	
00100011	#	00110011	3	01000011	C	01010011	ŝ	
00100100	\$	00110100	4	01000100	D	01010100	Ť	
00100101	%	00110101	5	01000101	E	01010101	Ū	
00100110	&	00110110	6	01000110	F	01010110	V	
00100111	•	00110111	7	01000111	G	01010111	W	
00101000	(00111000	8	01001000	H	01011000	X	
00101001)	00111001	9	01001001	I	01011001	Y	
00101010	*	00111010	: :	01001010	J	01011010	Z	
00101011	+	00111011	;	01001011	K	01011011	1	
00101100	,	00111100	<	01001100	L	01011100	1	
00101101	-	00111101	_	01001101	M	01011101	1	
00101110	•	00111110	>	01001110	N	01011110	٨	
00101111	/	00111111	. 5	01001111	O		, ,	

Коду 00100000 в этой таблице соответствует **пробел** — пустой промежуток величиной в один символ, который используется для отделения одного слова от другого.

Коды русских букв отличаются от кодов латинских. Например, большая русская буква "М" имеет код 11101101, буква "И" — код 1110010, буква "У" — код 11110010, буква "У" — код 11110101. Таким образом, слово "МИР" кодируется последовательностью из 24 бит

1110110111101001111110010,



Для кодировки текстовой информации одним из первых стандартов был код **КОИ-8** (код обмена информацией 8-битный)

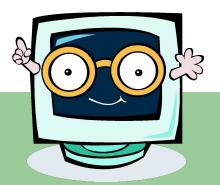
Эта кодировка применяется в современных компьютерах с операционной системой UNIX

Одному символу присваивается код из 8 двоичных разрядов

- М русская большая 11101101
- М латинская большая 01001101

Для 8 бит существует 256 комбинаций (2⁸) от 0000 0000 до 1111 1111

Для каждой цифры, буквы, символа, а так же пробела существует своя комбинация из 8 бит


Единицы измерения количества информации

8 бит = 1 байт

1 Гбайт = 2^{10} Мбайт = 1024^3 байт ≈ 1 млрд. байт

Физический объем информации -

это число символов в сообщении, содержащем информацию, умноженное на информационную емкость одного символа Физический объем информации определяет объем памяти компьютера или дискового пространства, необходимый для ее хранения

Задание:

Посчитайте количество бит и байт в следующих выражениях:

Мир

3 байта = 24 бит

Миру мир!

9 байт = 72 бит

Vile, vide, vice 16 байт = 128 бит

С помощью стандартной программы операционной среды Windows КАЛЬКУЛЯТОР вычислите:

- Сколько бит в 1 Кбайт
- Сколько байт в 1 Гбайт

Ответ:

1 Кбайт=1 024 байт=8 192 бит

1 Гбайт= 1 024³ байт= 1 073 741 824 байт


Содержательный подход к измерению информации

Неопределенность знаний о некотором событии — это количество возможных результатов события.

Сообщение, уменьшающее неопределенность в 2 раза, несет 1 бит информации.

Количество информации і, содержащейся в сообщений учто хартли произошло одно из равновероятных событий, определяется из решения показательного уравнения:

 $2^{i}=N$ или $I=log_{2}N$

