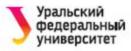


Структуры

Пример. Сведения о студентах группы.


Иллюстративный материал к лекциям по алгоритмизации и программированию

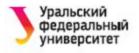
Автор Саблина Н.Г.

2016 г.

Содержание

Постановка задачи

Метод решения

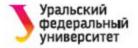

Схема алгоритма записи данных

Текст программы ввода данных Схема алгоритма вычисления среднего возраста

Текст программы

Обавторе

Постановка задачи

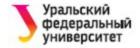

Условие задачи

Сохраним в файле следующие сведения о студентах некоторой группы: фамилию, имя, возраст, рост.

Вычислим средний возраст студентов группы и определим самого высокого студента в группе.

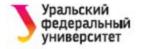
1) Постановка задачи

- Исходными данными для этой программы являются сведения о студентах: фамилия, имя строковые данные; возраст натуральное число, рост в метрах действительное число. Все данные вводятся с клавиатуры.
- Выходные данные файл, содержащий сведения, средний возраст студентов действительное число, фамилия, имя строковые данные, рост самого высокого студента в группе действительное число. Сведения о самом высоком студенте выводятся на экран



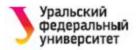
Метод решения

- Для организации такого списка студентов создадим тип student, представляющий собой структуру с соответствующими полями:
 - фамилия строковое поле;
 - имя строковое поле;
 - возраст поле целого положительного типа,
 - рост в метрах– действительное число.
- Сведения о студентах сохраним в файле group.dat. Тип элементов этого файла – student.
- Разделим решение этой задачи на две независимые подзадачи:
 - ввод данных о студентах и запись этих данных в файл;
 - вычисление среднего возраста и определение самого высокого студента в группе на основании данных из файла.

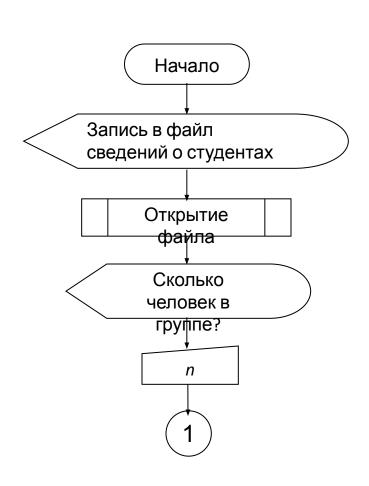


Метод решения. Подзадача 1 (1 из 2)

- Основной целью этой подзадачи является организация диалога ввода исходных данных.
 - Сначала запрашивается количество студентов в группе (n).
 - Затем в цикле вводятся данные о каждом студенте.
- Эти сведения заносятся в соответствующие поля переменной person типа student.
- Для обращения к отдельному полю структуры person используются составные имена, например,
 - person.famil, person.rost и т.п.



Метод решения. Подзадача 1 (2 из 2)


- Полностью сформированная запись об і-м студенте сразу же записывается в файл с помощью одной операции записи.
- Использование структурированного типа student делает возможным осуществлять запись в файл всех сведений о студенте за одну операцию записи.
- После записи в файл сведений об i-ом студенте переменная person снова использовуется на следующем шаге цикла для сбора сведений об (i+1) – ом студенте.
- Т.о. не требуется массива структур для хранения данных о группе в целом. Хранилищем сведений о группе является файл

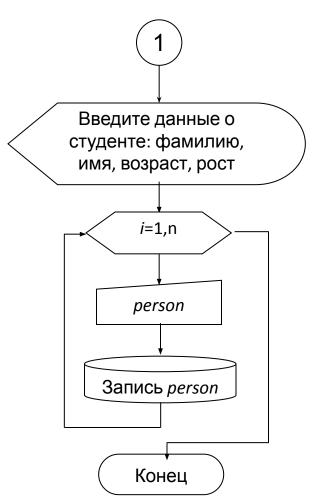
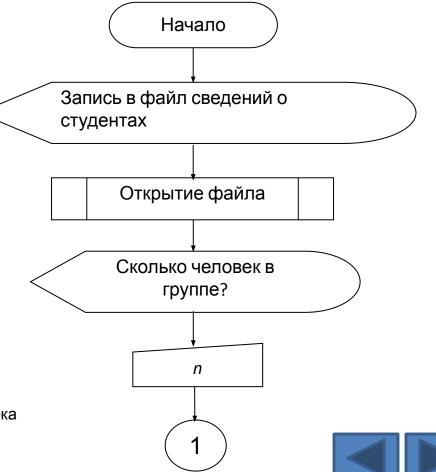
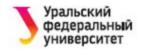


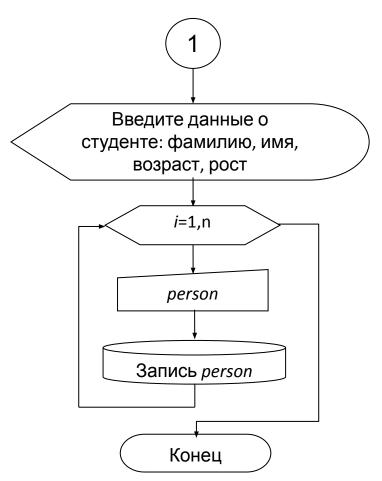
Схема алгоритма записи данных

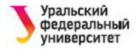




Текст программы ввода данных (1 из 2)

```
int main()
 struct student{
  char famil[20];
  char name[15];
  unsigned int let;
  float rost:
int i,n;
  student person;
  FILE *group;
      char* file name="gruppa.dat";
      group=fopen(file_name,"w");
      cout<<"Сколько человек в групе?";
      cin>>n;
      fflush(stdin); //очистка буфера входного потока
```


Текст программы ввода данных (2 из

2)

```
cout<<"Введите данные о студнте:";
    cout<<"фамилия, имя,возраст, рост";
   for(i=1;i<=n;i++)
    {cout<<"\n"<<i<") ";
    cin>>person.famil;
    cin>>person.name;
    cin>>person.let;
    cin>>person.rost;
   fwrite(&person, sizeof(student),1,group);
fclose(group);
```


Метод решения. Подзадача 2 (1 из 4)

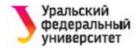
- Исходные данные для второй задачи вводятся из файла group.dat.
- Сведения из файла считываются последовательно по одной записи о студенте за одну операцию чтения. Так повторяется пока не будет достигнут конец файла. Т.о. процесс считывания записей из файла циклический.
- Средний возраст студентов в группе определяется по формуле $w_{cp} = \frac{\sum_{i=1}^{w_i} w_i}{n_i}$ w_i где w_i возраст і-ого студента, n количество

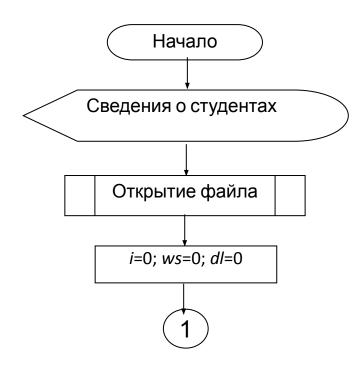
студентов в группе

Метод решения. Подзадача 2 (2 из 4)

- Для определения самого высокого в группе будем сравнивать рост *i*-ого студента, сведения о котором прочитали из файла на текущем шаге цикла, с ростом самого высокого из уже прочитанных ранее из файла сведений.
- Если рост *i*-ого оказался больше того значения, которое считалось максимальным до этого, то его значение запоминаем как самый высоких рост, а также запоминаем номер его записи в файле *k* .

Метод решения. Подзадача 2 (3 из 4)


- Таким образом, в теле цикла выполняются следующие действия:
 - считывание данных об очередном студенте в переменную регson, вывод на экран сведений о нем,
 - добавление его возраста к суммарному возрасту группы,
 - сравнение роста данного студента с ростом других уже просмотренных студентов.
- Кроме того, имеется счетчик студентов *i*.


Метод решения. Подзадача 2 (4 из 4)

- Считывание записи из файла в переменную person осуществляется за одну операцию чтения (так же как и запись), а при выводе на экран нужно обратиться к каждому полю записи отдельно.
- После просмотра всех записей указатель файла переводится на запись с номером k, производится считывание и вывод на экран сведений о самом высоком студенте в группе.

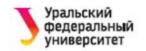
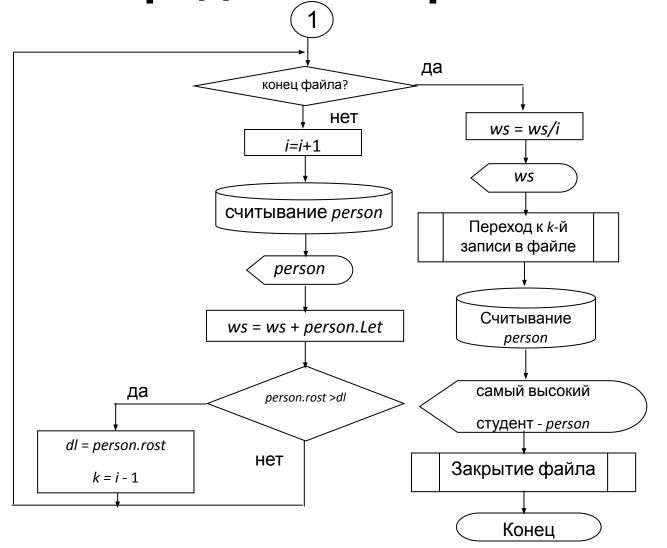


Схема алгоритма вычисления среднего возраста



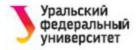
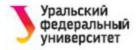


Схема алгоритма вычисления среднего возраста

Текст программы (1 из 4)

```
#include <conio.h>
#include <stdio.h>
#include <io.h>
#include <iostream.h>
int main()
{ struct student
            char famil[20];
                               //фамилия
            char name[15];
                             //имя
                                  //возраст
            unsigned int let;
            float rost;
                              // рост
        } ;
```

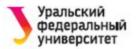



Текст программы (2 из 4)

```
student person;
   FILE *group;
   int i,k,ws;
    float dl;
cout<<"\n Сведения о студентах группы";
//открытие файла для чтения
group=fopen("gruppa.dat","r");
i=0; dl=0; ws=0;
```


Текст программы (3 из 4)

```
while (!feof(group)) // достигнут конец файла
{ // считывание записи из файла
fread(&person,sizeof(person),1,group);
if (feof(group)) break;
++і; //счетчик студентов
ws=ws+person.let; //суммарный возраст
if (person.rost>dl) { dl=person.rost; k=i-1; }
//вывод на экран
cout<<"\n"<<i<") "<<person.famil<<" "<<person.name;
cout<<", vozrast- "<<person.let; cout<<" let, rost- "<<person.rost<<" M.";
```

Текст программы (4 из 4)

```
float sr=ws/(i);
cout<<"\n Средний возраст- "<<sr<<" лет";
long p=k*sizeof(student)+1; fseek (group,p,0);
fread(&person, size of (student), 1, group);
cout<<"\n Самый высокий в группе - "<<person.famil<<"
   "<<person.name;
cout<<". Его poct- "<<person.rost<<" м.";
fclose(group); // {закрытие файла}
getch();
return 0;}
```


Автор:

Саблина Наталья Григорьевна

Ст. преподаватель

каф. РТС УрФУ

