Работа в Excel 2007

- Основы
- 2. Диаграммы
- 3. Численные методы
- 4. Статистика
- 5. Восстановление зависимостей
- 6. <u>Моделирование</u>

Работа в Excel 2007

Тема 1. Основы

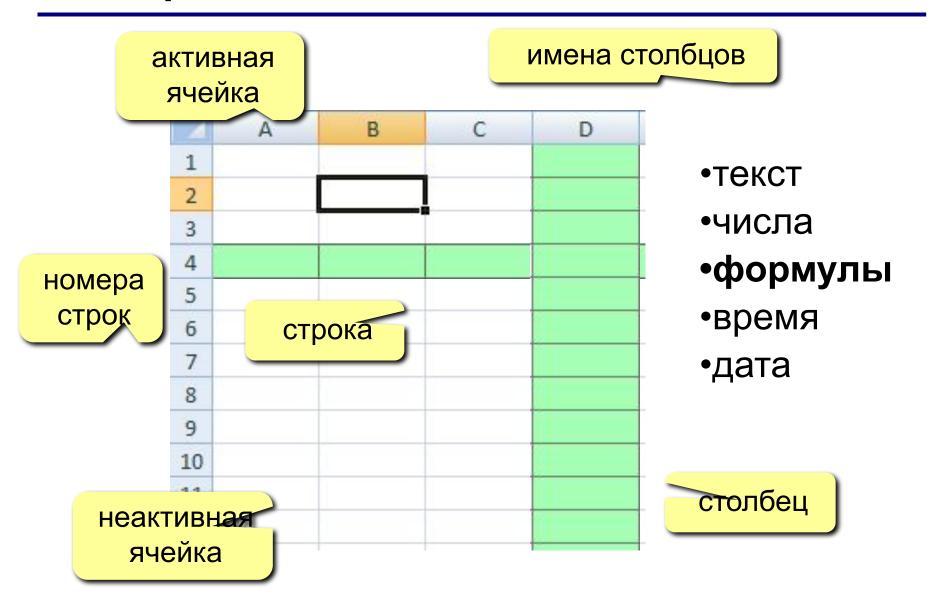
Электронные таблицы

Основная задача — автоматические вычисления с данными в таблицах.

Кроме того:

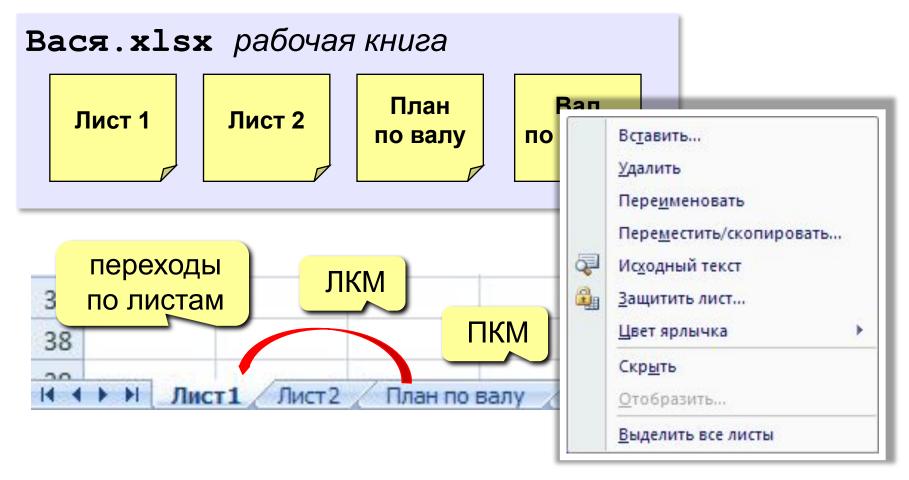
- хранение данных в табличном виде
- представление данных в виде диаграмм
- анализ данных
- составление прогнозов
- поиск оптимальных решений
- подготовка и печать отчетов

Примеры:

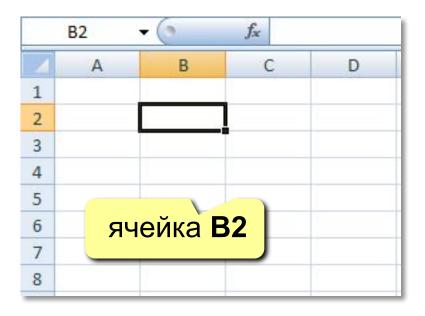

• Microsoft Excel – файлы *.xls, *.xlsx

• OpenOffice Calc – файлы * .ods – бесплатно

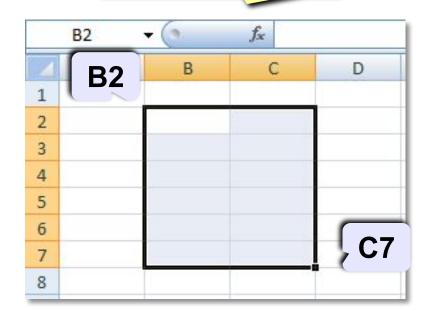
Электронные таблицы


Начало работы с *Microsoft Excel*

Программы – Microsoft Office – Excel 2007



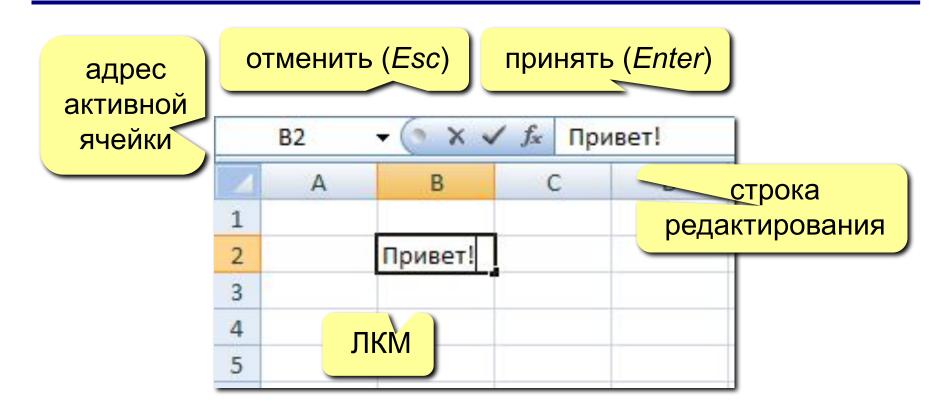
Файлы: *.xlsx (старая версия - *.xls)



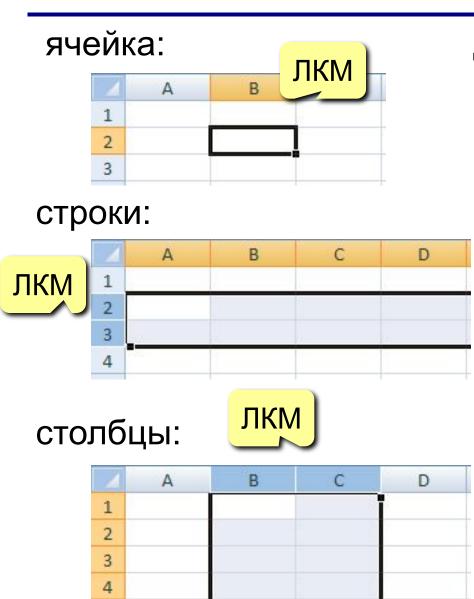
Адреса

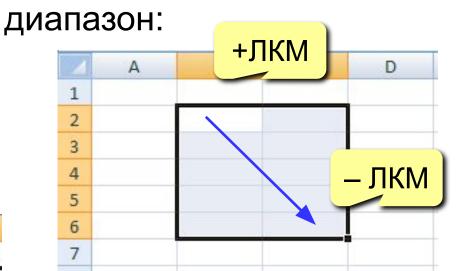
адрес активной ячейки

диапазон В2:С7

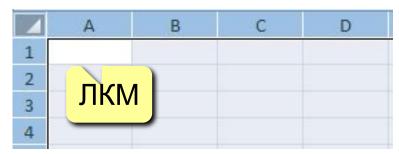

Ссылки в формулах:

$$=A2+2*CYMM(B2:C7)$$

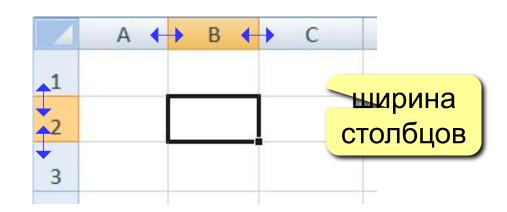

Формула всегда начинается знаком «=»!

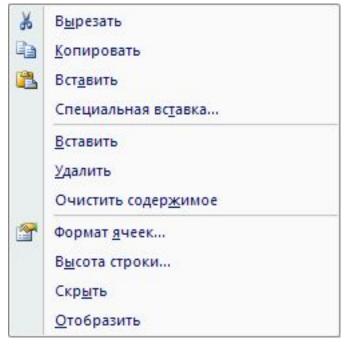

Ввод данных

F2 – редактировать прямо в ячейке

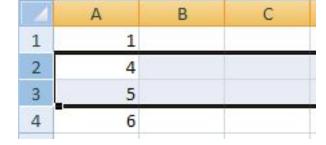

Выделение данных

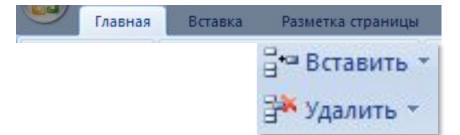
несвязанные диапазоны: +Ctrl и выделять второй


вся таблица:

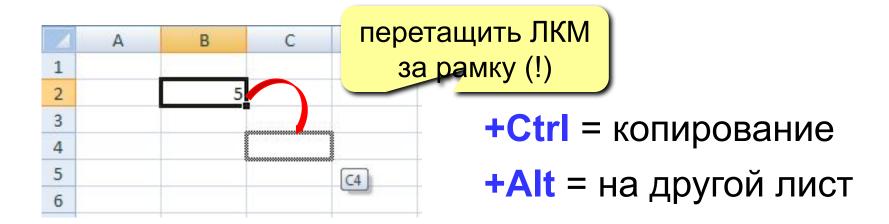

Операции со строками и столбцами

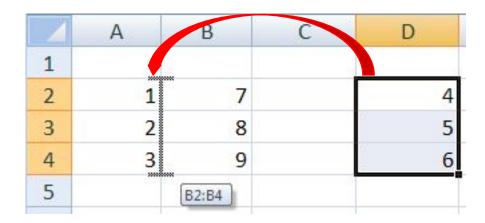
размеры



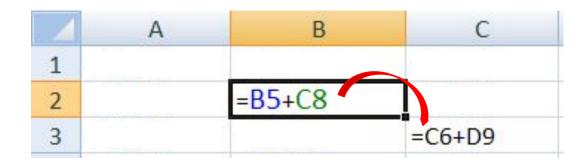


добавление, удаление





Перемещение и копирование



перемещение со сдвигом (+Shift)

Типы ссылок

ОТНОСИТЕЛЬНЫЕ (меняются так же, как и адрес формулы)

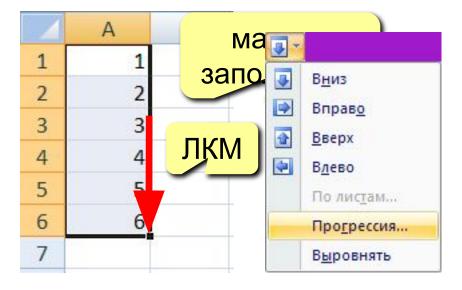
формула «переехала» на один столбец вправо и на одну строку вниз;

имя **столбца** ↑ на 1 номер **строки** ↑ на 1

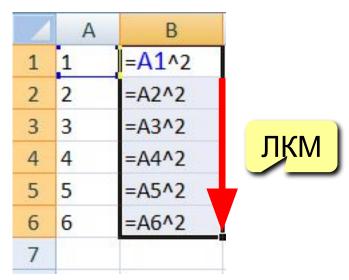
абсолютные

(не меняются)

Z	А	В
1	=\$B\$5+\$C\$8	=\$B\$5+\$C\$8
2	=\$B\$5+\$C\$8	=\$B\$5+\$C\$8
3	=\$B\$5+\$C\$8	=\$B\$5+\$C\$8


смешанные

(меняется только относительная часть)


Z	А	В	С
1	=\$B4+B\$8	=\$B4+C\$8	=\$B4+D\$8
2	=\$B5+B\$8	=\$B5+C\$8	=\$B5+D\$8
3	=\$B6+B\$8	=\$B6+C\$8	=\$B6+D\$8

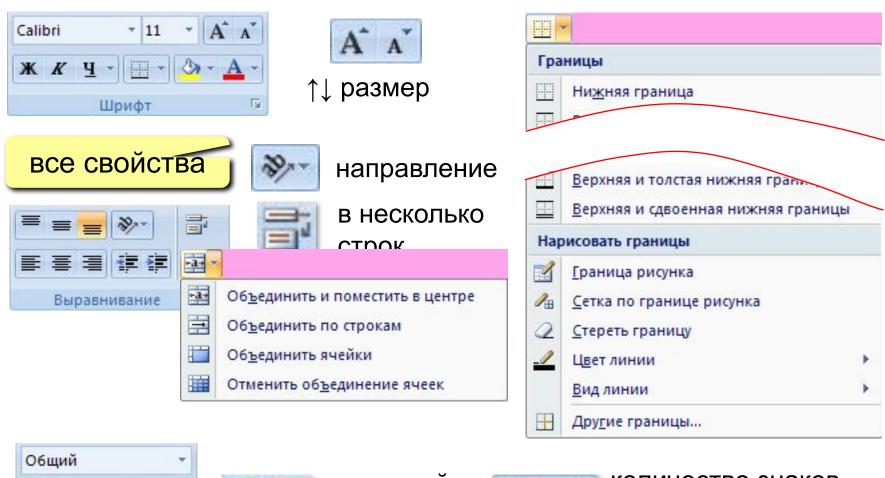
Заполнение рядов

арифметическая прогрессия

копирование формул

даты

4	А
1	02.02.2009
2	05.02.2009
3	08.02.2009
4	11.02.2009
5	14.02.2009
6	

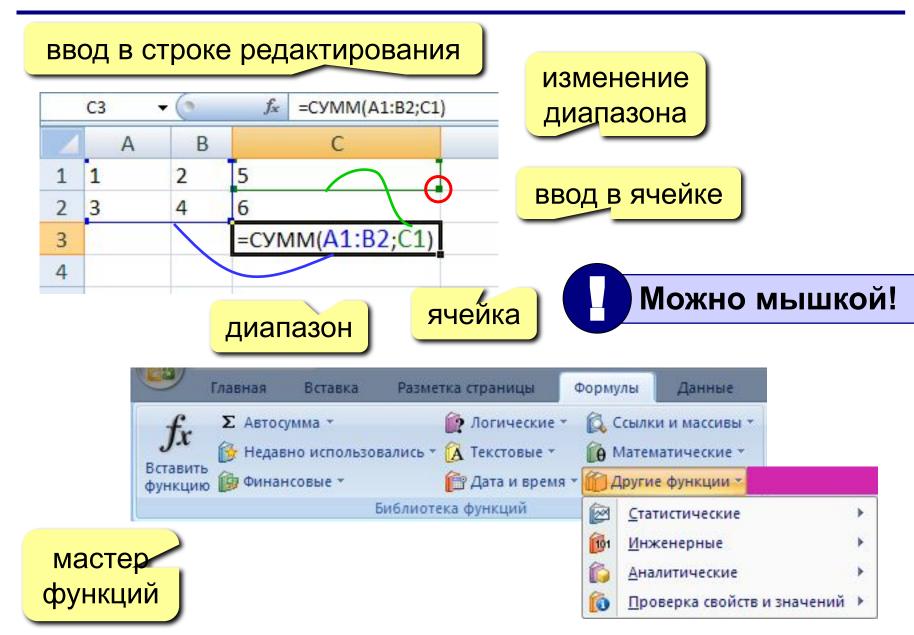

время

1	Α
1	12:00:00
2	12:20:00
3	12:40:00
4	13:00:00
5	13:20:00
6	

СПИСКИ

4	А	В
1	январь	
2	февраль	
3	март	
4	апрель	
5	май	
6		

Оформление ячеек



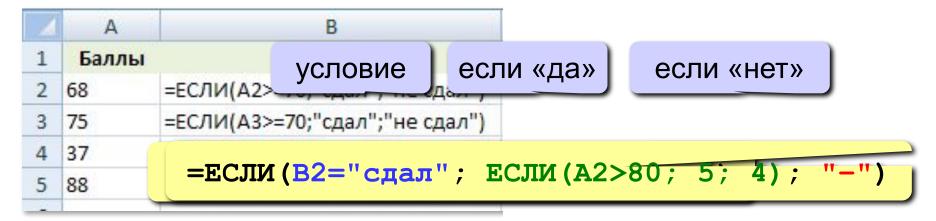
денежный формат

количество знаков в дробной части

Функции

Некоторые функции

СУММ – сумма значений ячеек и диапазонов СРЗНАЧ – среднее арифметическое МИН – минимальное значение


МАКС – максимальное значение

	Α	В	С	D
1	1	3	=СУММ(А1:В2)	=МИН(A1:B2)
2	2	4	=CP3HA4(A1:B2)	=MAKC(A1:B2)

4	А	В	С	D
1	1	3	10	1
2	2	4	2,5	4

Функция ЕСЛИ

ЕСЛИ – выбор из двух вариантов

	Α	В	
1	Баллы	Результат	
2	68	не сдал	
3	75	сдал	
4	37	не сдал	
5	88	сдал	

Логические операции

НЕ – обратное условие, **НЕ (В2<10)** ⇔ **В2>=10**

И – одновременное выполнение всех условий

	Α	В	С	D
1	Фамилия	Год рождения	Рост	Принят
2	Алексеев	1995	176	=ЕСЛИ(И(В2>1994;С2>175);"да";"-")
3	Березин	1995	167	=ЕСЛИ(И(В3>1994;С3>175);"да";"-")
4	Γ		400	CCCV(N(B4>1994·C4>475) " " " "
	=ЕСЛИ	I(M(B2>1)	994;	C2>175);"да";"-")

	Α	В	С	D
1	Фамилия	Год рождения	Рост	Принят
2	Алексеев	1995	176	да
3	Березин	1995	167	10 7 3
4	Викторов	1994	180	(-)

Логические операции

ИЛИ – выполнение хотя бы одного из условий

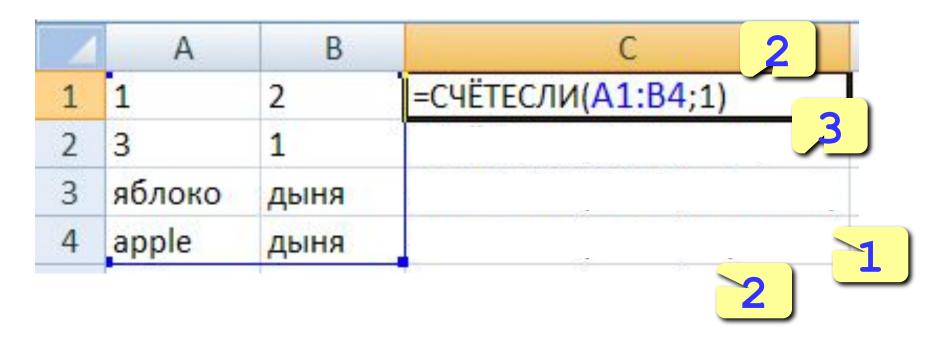
Z	А	В	С	D
1	Фамилия	Математика	Физика	Принят
2	Алексеев	100	67	=ECЛИ(ИЛИ(B2=100;C2=100;B2+C2>=180);"да";"-")
3	Березин	98	98	=ECЛИ(ИЛИ(B3=100;C3=100;B3+C3>=180);"да";"-")
4	Викторов	90	80	=ECЛИ(ИЛИ(B4=100;C4=100;B4+C4>=180);"да";"-")

Z	Α	В	С	D
1	Фамилия	Математика	Физика	Принят
2	Алексеев	100	67	да
3	Березин	98	98	да
4	Викторов	90	80	-

Подсчёт числовых значений

СЧЁТ – считает ячейки с числами или формулами,

которые дают числа

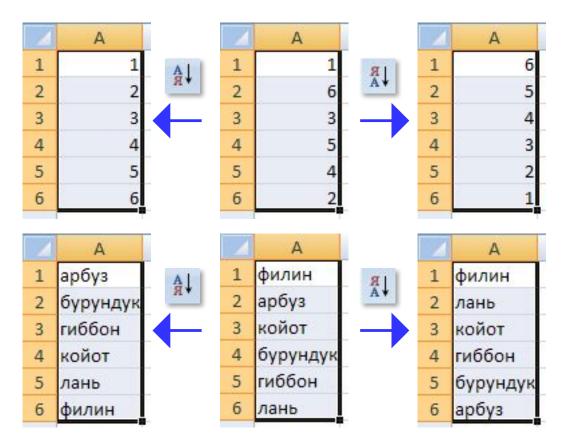

=A1+1

4	А	В	С
1	1	2	
2	L	Вася	
3			=C4ËT(A1:B2)

2


Подсчёт значений по условию

СЧЁТЕСЛИ – считает ячейки, удовлетворяющие условию



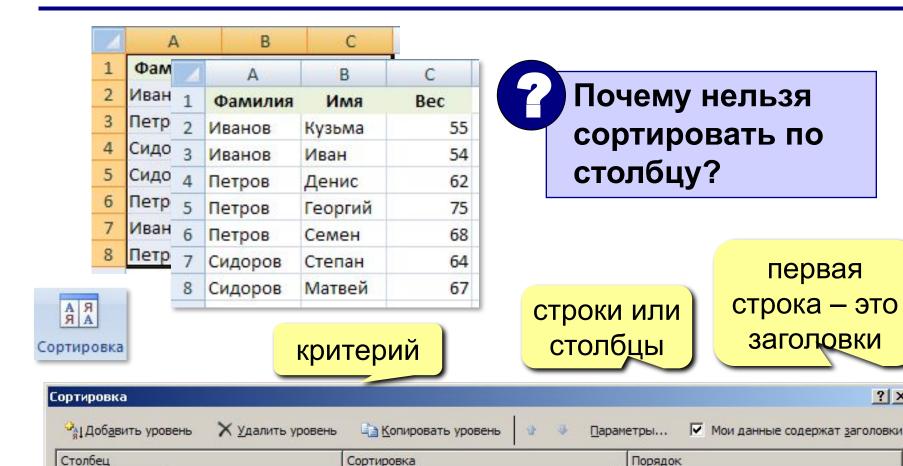
Сортировка

Сортировка – это расстановка элементов в заданном порядке.

Сортировка одного столбца

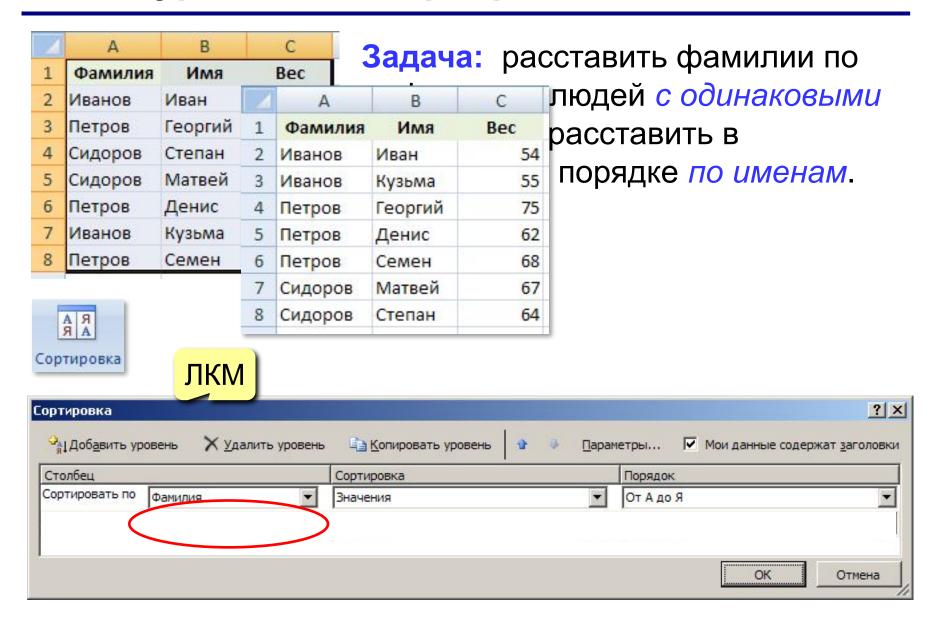
? X

Отмена


OK

От А до Я

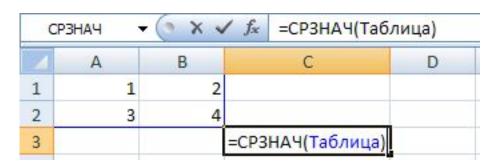
Сортировка связанных данных


Сортировать по

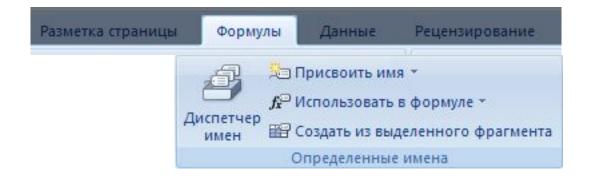
Фамилия Фамилия Имя Bec

Значения

Многоуровневая сортировка

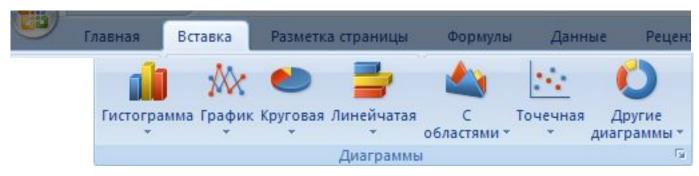


Имена ячеек и диапазонов


Присвоить имя

Имена в формулах

Работа с именами



Работа в Excel 2007

Тема 2. Диаграммы

Общий подход

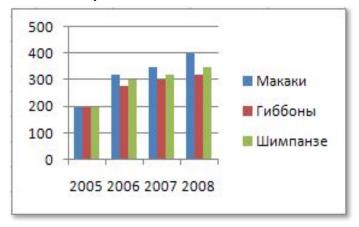
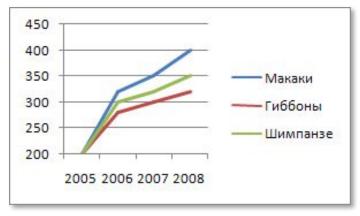
- диаграммы строятся на основе данных таблицы
- проще всего сначала выделить все нужные данные, а потом...

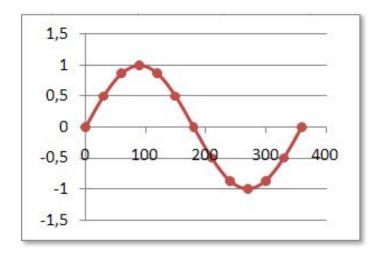
- все данные, которые должны обновляться автоматически, нужно выделить
- для выделения несвязанных диапазонов используем +Ctrl

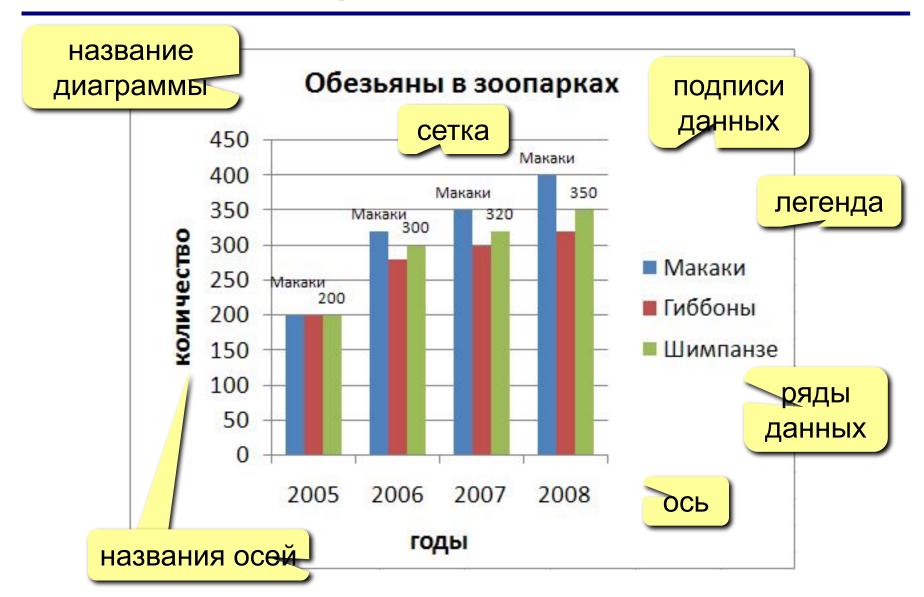
Основные типы диаграмм

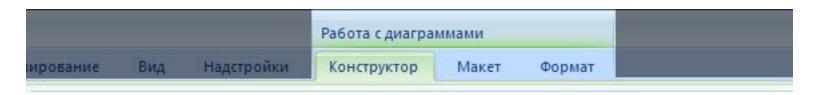
Гистограмма (столбчатая диаграмма):

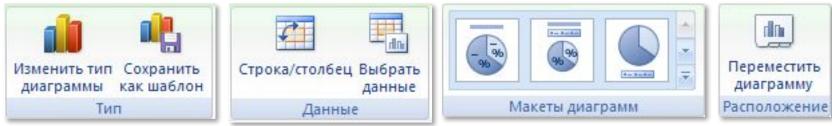
сравнение значений одного или нескольких рядов данных

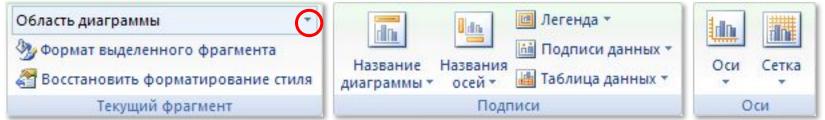



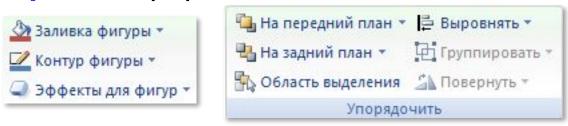

График: показывает изменение процесса во времени (равномерные отсчеты)


Круговая: доли в сумме


Точечная: связь между парами значений (график функции)

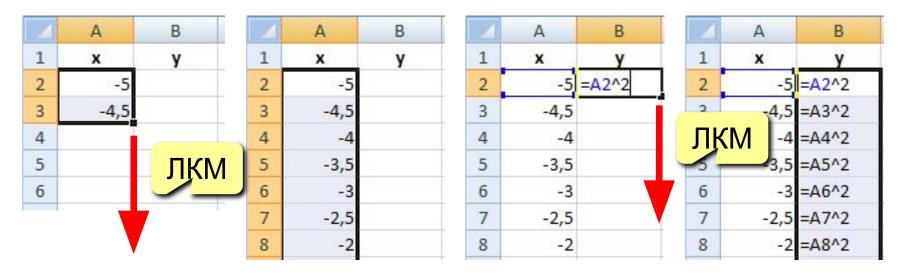

Элементы диаграмм


Настройка диаграммы и ее элементов


Конструктор: общие свойства

Макет: настройка свойств отдельных элементов

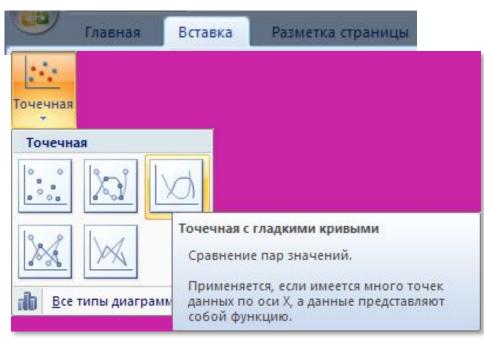
формат: оформление отдельных элементов



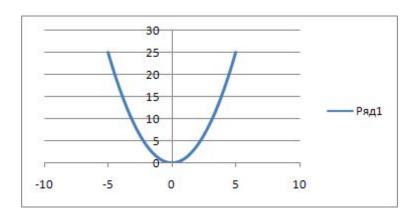
Графики функций

Задача: построить график функции $y = x^2$ для $-5 \le x \le 5$.

Таблица значений функции: шаг 0,5



Графики функций


Вставка диаграммы «Точечная»:

выделить данные

4	Α	В	
1	x	у	
2	-5	25	
3	-4,5	20,25	
4	-4	16	
5	-3,5	12,25	
6	-3	9	
7	-2,5	6,25	
8	-2	4	
9	-1,5	2,25	

результат:

Работа в Excel 2007

Тема 3. Численные методы

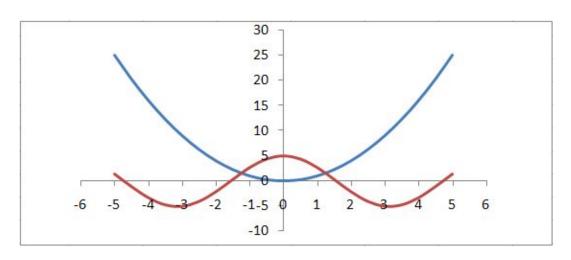
Решение уравнений

Задача: найти все решения уравнения $x^2 = 5\cos x$ на интервале [-5,5]

Как решить математическими методами?

Методы решения уравнений:

- аналитические: решение в виде формулы $\chi = ...$
- •численные: приближенное решение, число
 - 1) выбрать *начальное приближение* x_0 «рядом» с решением


- 2) по некоторому алгоритму вычисляют первое приближение, затем второе и т.д. $x_0 \to x_1 \to x_2 \to ...$
- 3) вычисления прекращают, когда значение меняется очень мало (метод сходится) $x_0 \to ... \to x_{15} \to x_{16} \approx x^*$

Решение уравнения $x^2 = 5\cos x$

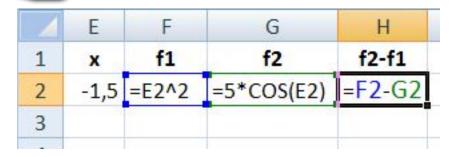
1. Таблица значений функций на интервале [-5,5]

Z	Α	В	С	D
1	x	f1	f2	
2	-5	=A2^2	=5*COS(A2)	
3	-4,5			
4				

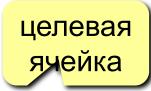
2. Графики функций (диаграмма «Точечная»)

2 решения:

начальные приближения


$$x_0 = -1.5$$

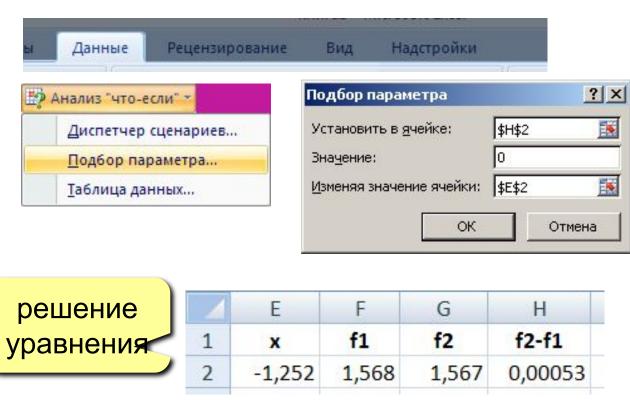
 $x_0 = 1.5$


$$x_0 = 1,5$$

Решение уравнения $x^2 = 5\cos x$

3. Подготовка данных

начальное приближение


Цель: H2=0

Зачем нужна разность?

Решение уравнения $x^2 = 5\cos x$

4. Подбор параметра

ошибка

Почему не нуль?

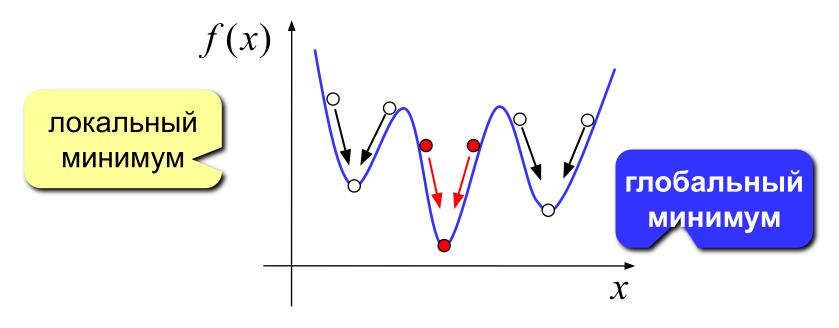
Оптимизация

Оптимизация — это поиск оптимального (наилучшего) варианта в заданных условиях.

Оптимальное решение — такое, при котором некоторая заданная функция (*целевая функция*) достигает минимума или максимума.

Постановка задачи:

• целевая функция

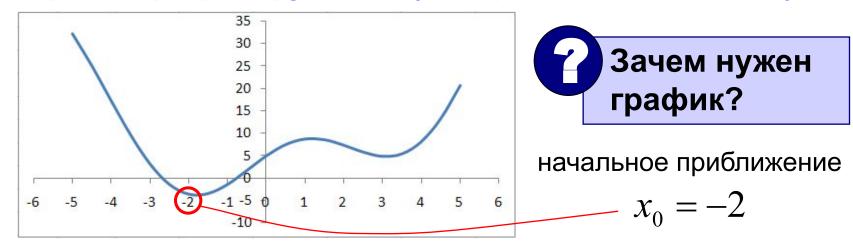

$$f(x) \rightarrow \min$$
 (расходы, потери, ошибки) $f(x) \rightarrow \max$ (доходы, приобретения)

• ограничения, которые делают задачу осмысленной

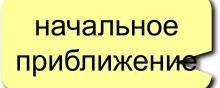
Задача без ограничений: построить дом при минимальных затратах.

Решение: не строить дом вообще.

Оптимизация



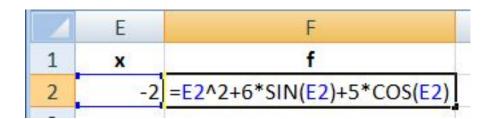
- обычно нужно найти глобальный минимум
- большинство численных методов находят только локальный минимум
- минимум, который найдет *Excel*, зависит от выбора начального приближения («шарик на горке скатится в ближайшую ямку»)


Поиск минимума функции

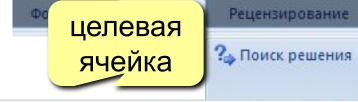
$$y = x^2 + 6\sin x + 5\cos x$$

1. Строим график функции (диаграмма «Точечная»)

2. Подготовка данных


1	E	F
1	X	f
2	-2	=E2^2+6*SIN(E2)+5*COS(E2)

целевая ячейка



Изменение E2 должно влиять на F2!

Поиск минимума функции

3. Надстройка «Поиск решения»

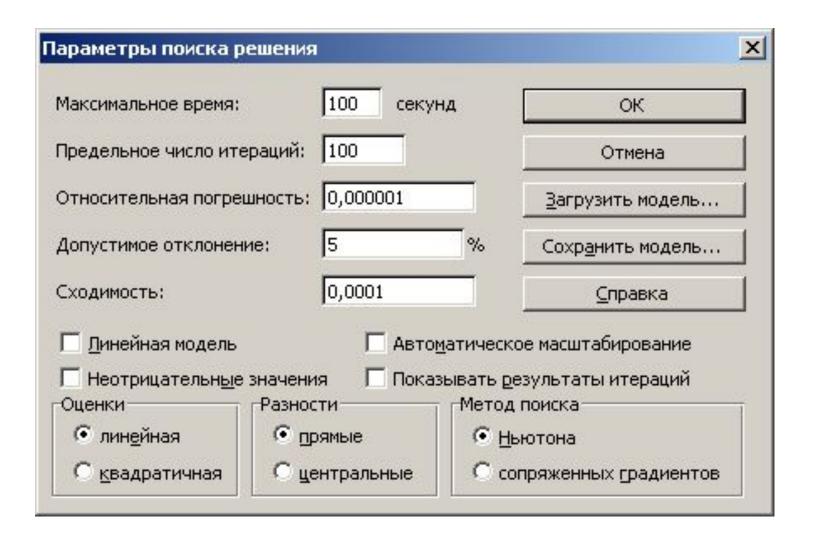
изменяемые ячейки:

E2

D2:D6

D2:D6; C5:C8

ограничения


A1 <= 20

B2:B8 >= 5

А1 = целое

	ить целевую ячейку: \$F\$2 🔣	<u>В</u> ыполнить
Равной:	С <u>м</u> аксимальному значению С <u>з</u> начению: 0	Закрыть
	• ми <u>н</u> имальному значению ячейки:	
\$E\$2 <u>О</u> гранич		<u>П</u> араметры
-		1
ı		1
	<u>И</u> зменить	Восс <u>т</u> ановит

Параметры оптимизации

Оптимизация

Подбор параметра – это оптимизация?

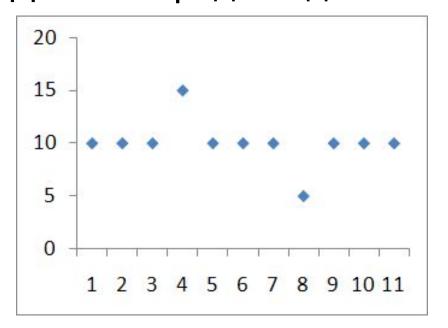
Надстройка «Поиск решения» позволяет:

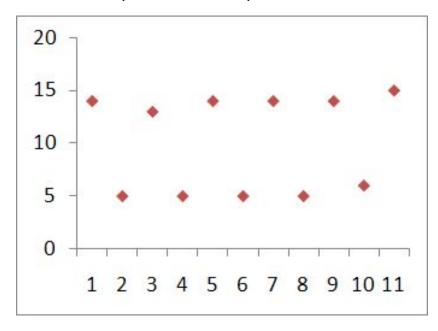
- искать минимум и максимум функции
- использовать несколько изменяемых ячеек и диапазонов
- вводить ограничения (<=, >=, целое, двоичное)
- Как влияет ограничение «А1-целое» на сложность решения задачи?

Работа в Excel 2007

Тема 4. Статистика

Ряд данных и его свойства

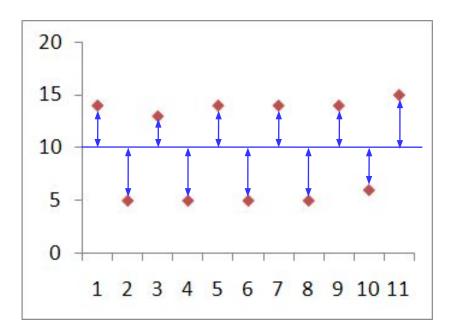

Ряд данных — это упорядоченный набор значений $x_1, x_2, ..., x_n$


Основные свойства (ряд А1: А20):

- количество элементов = CYËT (A1:A20)
- количество элементов, удовлетворяющих некоторому условию:
 - = СЧЁТЕСЛИ (A1:A20;"<5")
- минимальное значение =МИН (A1:A20)
- максимальное значение = МАКС (А1: A20)
- сумма элементов = **СУММ (A1:A20)**
- среднее значение = СРЗНАЧ (А1: А20)

Дисперсия

Для этих рядов одинаковы МИН, МАКС, СРЗНАЧ



Дисперсия («разброс») – это величина, которая характеризует разброс данных относительно среднего значения.

Дисперсия

$$D_{x} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + [] + (x_{n} - \overline{x})^{2}}{n}$$

$$\overline{x} = \frac{x_1 + x_2 + \square + x_n}{n}$$
 среднее арифметическое

$$(x_1 - \bar{x})^2$$
 квадрат отклонения x_1 от среднего

 D_{x} средний квадрат отклонения от среднего значения

Дисперсия и СКВО


Стандартная функция

=ДИСПР (А1: А20)

Функции – Другие – Статистические

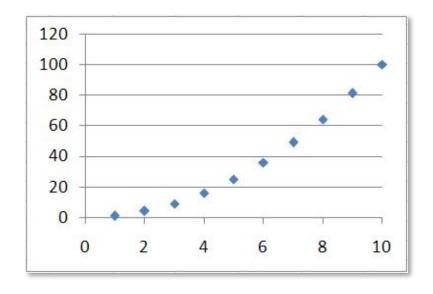
Что неудобно:

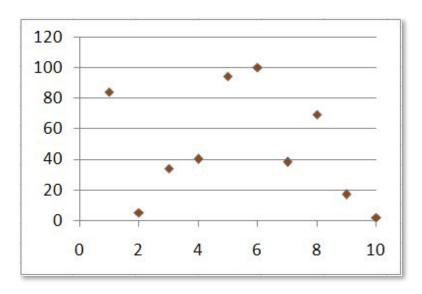
если x измеряется в метрах, то D_x – в M^2

СКВО = среднеквадратическое отклонение

$$\sigma_{x} = \sqrt{D_{x}}$$

=СТАНДОТКЛОНП (A1: A20)


Два ряда одинаковой длины:


$$X_1, X_2, ..., X_n$$

$$y_1, y_2, ..., y_n$$

Вопросы:

- •есть ли связь между этими рядами (соответствуют ли пары (x_i, y_i) какой-нибудь зависимости y = f(x))
- насколько сильна эта связь?

Ковариация:

$$K_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n}$$

Если x и y – один и тот же ряд?

$$K_{xx} = D_x$$

Как понимать это число?

в среднем!

- ullet если $K_{xy}>0$ увеличение ${\mathcal X}$ приводит к увеличению ${\mathcal Y}$
- ullet если $K_{xy} < 0$ увеличение ${\mathcal X}$ приводит к уменьшению ${\mathcal Y}$
- •если $K_{xy} \approx 0$ связь обнаружить не удалось

Что плохо?

- •единицы измерения: если x в метрах, y в литрах, то K_{xv} в м \cdot л
- K_{xy} зависит от абсолютных значений x и y , поэтому ничего не говорит о том, насколько сильна связь

Коэффициент корреляции:

$$\rho_{xy} = \frac{K_{xy}}{\sigma_x \cdot \sigma_y}$$

$$\rho_{xy} = \frac{K_{xy}}{\sigma_x \cdot \sigma_y}$$
 $\sigma_x, \ \sigma_y - \text{СКВО рядов } x \text{ и } y$

Какова размерность? безразмерный!

$$-1 \le \rho_{xy} \le 1$$

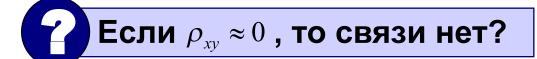
Как понимать это число?

- •если $ho_{xy} > 0$: увеличение $\mathcal X$ приводит к увеличению $\mathcal Y$
- •если $\rho_{xv} < 0$: увеличение ${\mathcal X}$ приводит к уменьшению ${\mathcal Y}$
- •если $\rho_{xy} \approx 0$: связь обнаружить не удалось

Как понимать коэффициент корреляции?

 $0 < |\rho_{xy}| \le 0,2$: очень слабая корреляция

 $0,2 < |\rho_{xy}| \le 0,5$: слабая


 $0.5 < |\rho_{xy}| \le 0.7$: средняя

 $0.7 < |\rho_{xy}| \le 0.9$: сильная

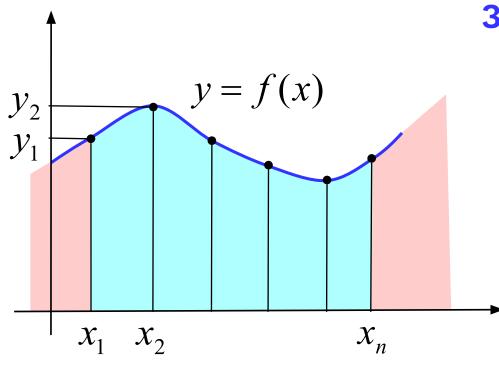
 $0.9 < |\rho_{xy}| \le 1$: очень сильная

 $\rho_{xy} = 1$: линейная зависимость y = ax + b, a > 0

 $\rho_{xy} = -1$: линейная зависимость y = ax + b, a < 0

Метод для определения линейной зависимости!

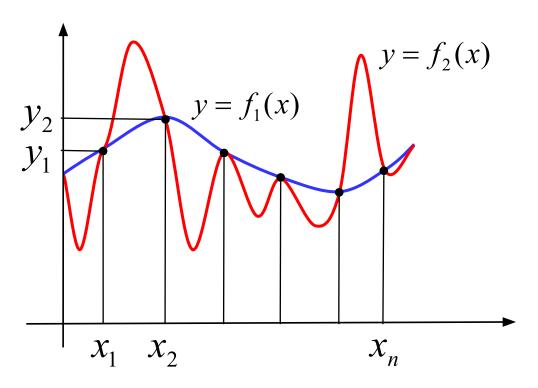
Работа в Excel 2007


Тема 5. Восстановление зависимостей

Два ряда одинаковой длины:

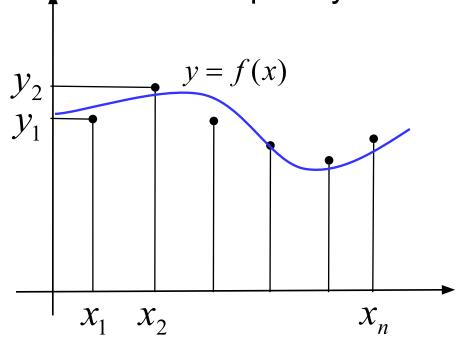
$$X_1, X_2, ..., X_n$$

$$x_1, x_2, ..., x_n$$
 $y_1, y_2, ..., y_n$


задают некоторую неизвестную функцию y = f(x)

Зачем:

- \bullet найти $\mathcal Y$ в промежуточных точках (интерполяция)
- ullet найти ${\cal Y}$ вне диапазона измерений (экстраполяция, прогнозирование)


Какое решение нам нужно?

Через заданный набор точек проходит бесконечно много разных кривых!

Вывод: задача **некорректна**, поскольку решение неединственно.

Корректная задача: найти функцию **заданного вида**, которая лучше всего соответствует данным.

График функции не обязательно проходит

через заданные точки!

Примеры:

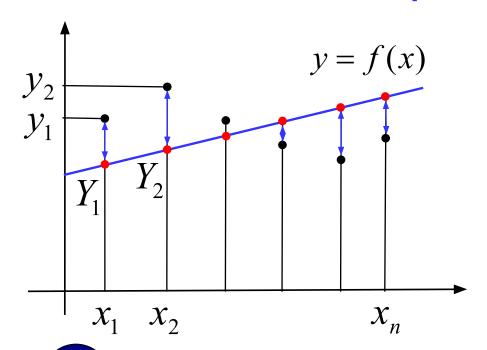
- •линейная $y = a \cdot x + b$
- •полиномиальная

$$y = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

- •степенная $y = a \cdot x^b$
- •экспоненциальная

$$y = a \cdot e^{bx}$$

•логарифмическая

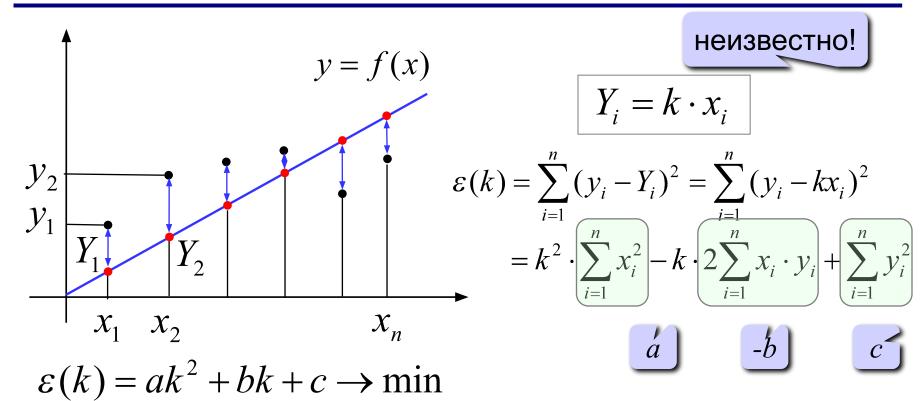

$$y = a \cdot \ln x + b$$

Как выбрать функцию?

Что значит «лучше всего соответствует»?

Метод наименьших квадратов (МНК):

 (x_i, y_i) заданные пары значений


$$Y_i = f(x_i)$$

$$\varepsilon = \sum_{i=1}^{n} (y_i - Y_i)^2 \to \min$$

Зачем возведение в квадрат?

- 1) чтобы складывать положительные значения
- 2) решение сводится к системе линейных уравнений (просто решать!)

МНК для линейной функции

$$\varepsilon$$
 k^*
 k

$$k^* = -\frac{b}{2a} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

Коэффициент достоверности

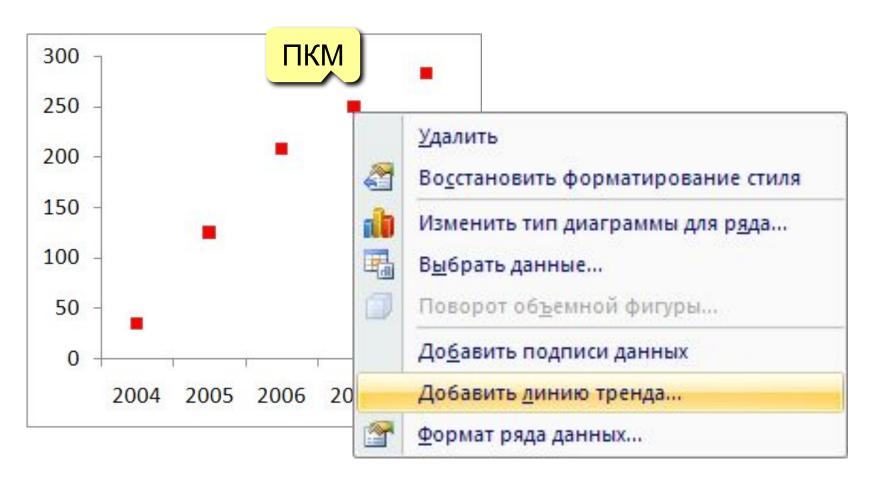
$$R^2 = 1 - rac{\displaystyle\sum_{i=1}^n (y_i - Y_i)^2}{\displaystyle\sum_{i=1}^n (y_i - \overline{y})^2} \qquad egin{array}{l} (x_i, y_i) & {
m 3a} \\ Y_i = f(x_i) & {
m \overline{y} - средне$$

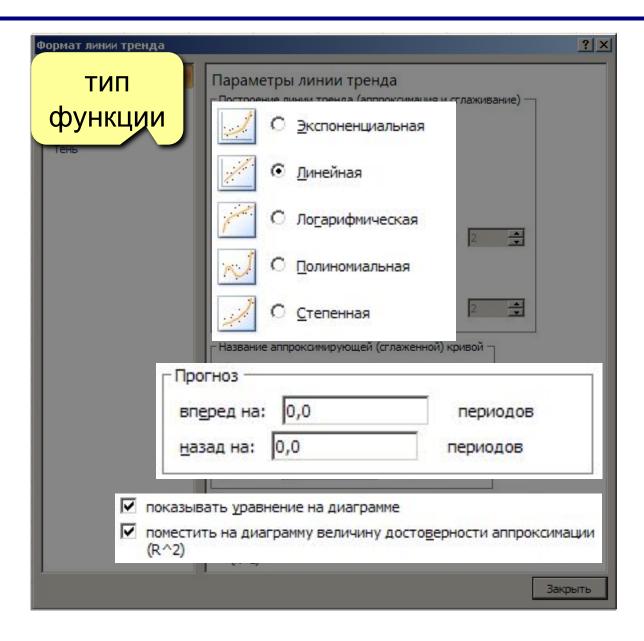
$$(x_i, y_i)$$
 заданные пары значений $Y_i = f(x_i)$ \overline{y} – среднее значение y_i

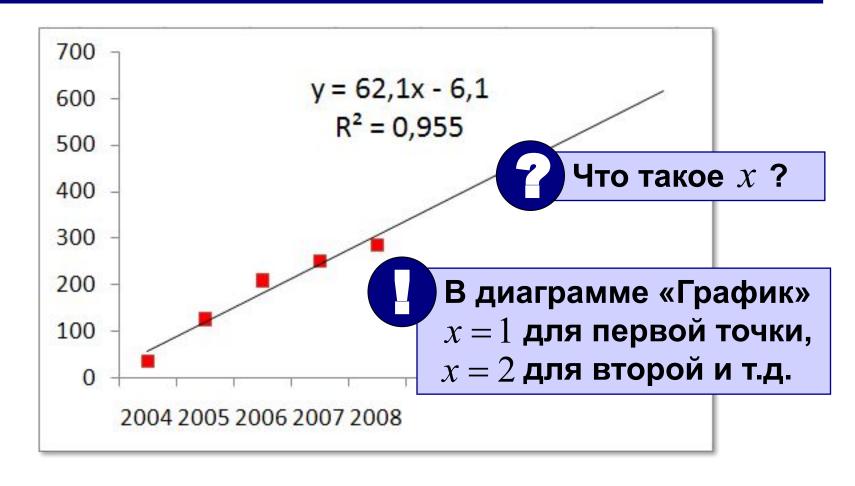
Крайние случаи:

•если график проходит через точки:

$$R^2 = 1$$


•если считаем, что y не меняется и $Y_i = \overline{y}$


$$R^2 = 0$$



Фактически - метод наименьших квадратов!

Диаграмма «График»:

Р Насколько хорошо выбрана функция?

Сложные случаи (нестандартная функция):

$$f(x) = a \cdot \sin kx + b$$

Что делать?

Алгоритм:

- 1) выделить ячейки для хранения a,k,b
- 2) построить ряд $Y_i = f(x_i)$ для тех же x_i
- 3) построить на одной диаграмме ряды y_i и Y_i
- 4) попытаться подобрать a,k,b так, чтобы два графика были близки
- 5) вычислить R^2 в отдельной ячейке функции: СУММКВРАЗН сумма квадратов разностей рядов ДИСПР дисперсия
- 6) Поиск решения: $R^2
 ightarrow \min$

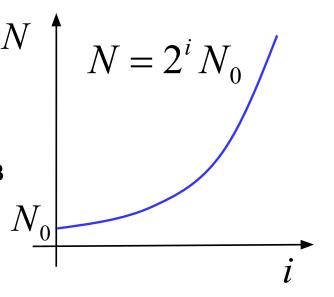
Это задача оптимизации!

Работа в Excel 2007

Тема 6. Моделирование

(по материалам учебника Н.В. Макаровой)

Модель деления



 $N_{\scriptscriptstyle 0}$ – начальная численность

$$N_{_{1}}=2N_{_{0}}\,$$
 - после 1 цикла деления

$$N_2 = 2N_1 = 4N_0$$
 – после 2-х циклов

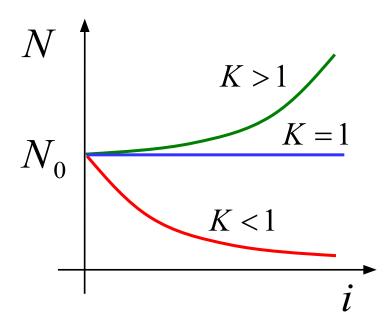
$$N_i = 2N_{i-1} = 2^i N_0$$

Особенности модели:

- 1) не учитывается смертность
- 2) не учитывается влияние внешней среды
- 3) не учитывается влияние других видов

Рождаемость и смертность

$$N_i = N_{i-1} + \overbrace{K_p \cdot N_{i-1}} - \overbrace{K_c \cdot N_{i-1}}$$


 $K_{\scriptscriptstyle p}$ – коэффициент рождаемости

 K_c – коэффициент смертности

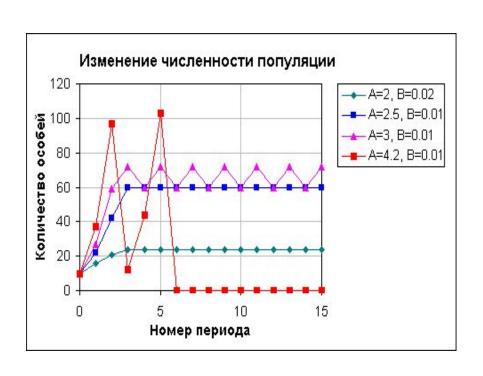
$$N_i = K \cdot N_{i-1}$$

Коэффициент изменения численности

$$K = 1 + K_p - K_c$$

Особенности модели:

- 1) не учитывается влияние численности N и внешней среды на K
- 2) не учитывается влияние других видов на K


Влияние численности и внешней среды

$$N_i = K \cdot N_{i-1}$$

$$N_i = K \cdot N_{i-1} | K = A \cdot (1 - B \cdot N_{i-1})$$

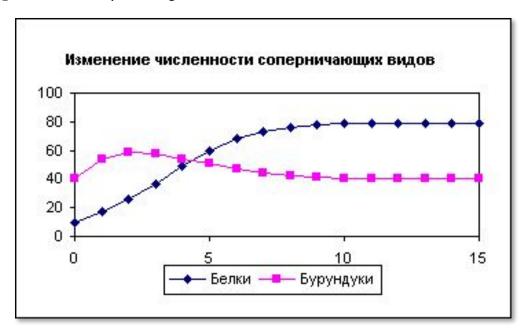
A — коэффициент устойчивости вида

B — коэффициент среды обитания

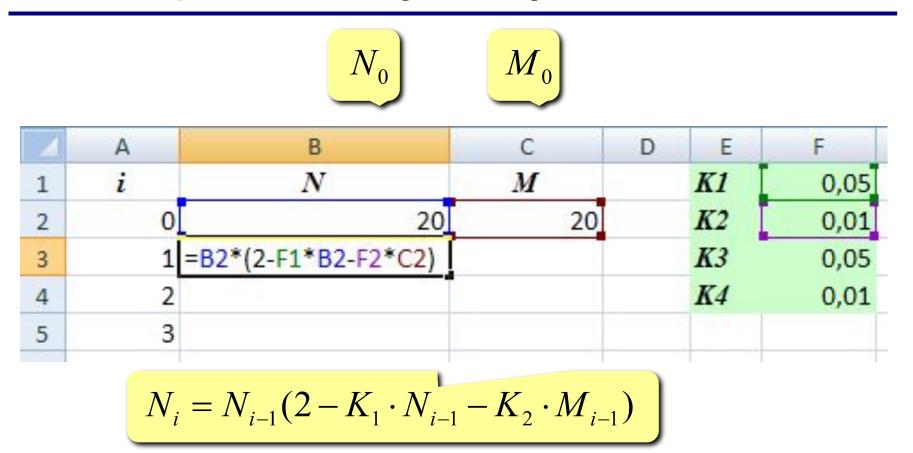
Варианты:

- •устанавливается постоянная численность
- •постоянно меняется (колебания)
- •вымирание

Влияние других видов


 N_{i} – численность белок, M_{i} – численность бурундуков

$$N_{i} = N_{i-1}(2 - K_{1} \cdot N_{i-1} - K_{2} \cdot M_{i-1})$$


$$M_{i} = M_{i-1}(2 - K_{3} \cdot M_{i-1} - K_{4} \cdot N_{i-1})$$

 K_2 , K_4 — взаимное влияние если $K_2 > K_1$ или $K_4 > K_3$ — враждующие виды

Моделирование двух популяций

Конец фильма