Раздел 3. Информационные системы предприятий

Урок № 13

ЭКСПЕРТНЫЕ СИСТЕМЫ

Понятие ЭС. Типы ЭС

Экспертиная система- это сложный программный комплекс, аккумулирующий знания специалистов в конкретных предметных областях и использующий этот опыт для консультаций менее квалифицированных пользователей

СТРУКТУРА ЭКСПЕРТНЫХ СИСТЕМ

- 1) Знания сгруппированы в классы (личности-Иванов, Петров) и имеются отношения между ними
- 2) Правила организуют процесс обработки знаний
- 3) Управляющая структура определяет способ применения правил

типы эс

- 1) Мощные ЭС рассчитаны на узкий круг использования н-р: ПВО)
- 2) ЭС широкого круга пользователей медицинские, учебные
- 3) ЭС с небольшим числом правил создаются специалистами редактируются пользователями строятся на основе справочников (поиск неисправностей)
- 4) Простые ЭС строятся самими пользователями на основе существующих БД

Особенности и преимущества применения ЭС

Знания в ЭС бывают формализованными и неформализованными (опыт специалистов). При использовании знаний в правилах используются обычные алгоритмы, поэтому знания необходимо предварительно формалилизовать

Особенности ЭС

- 1. Алгоритм решения неизвестен заранее. Он строится самой экспертной системой в процессе решения.
- 2. Ясность получаемых решений, то есть способность экспертной системы объяснять получаемое решение.
- 3. Способность экспертной системы к анализу и объяснению своих действий.
- 4. Способность приобретения новых знаний от пользователя эксперта, незнающего программирования.
- 5. Обеспечения дружественного естественного языка при общении с пользователем,

Преимущества применения ЭС

В 1985 было продано 12000 ЭС. С тех пор объем продаж растет пропорционально информатизационно-техническому развитию человечества. Использование ЭС позволяет экономить большие средства при относительно не больших вложениях (н-р: Фирма IBM экономит 12 млн \$ в год при стоимости разработки ЭС 100 тыс \$)

Применение ЭС позволяет:

- 1) повысить производительность труда в 3-6 раз, при этом выполнение отдельных операций ускоряется я 10-15 раз (по данным фирмы NEC);
- 2) ускорить поиск неисправностей в устройствах в 5-10 раз;
- 3) повысить производительность труда программистов в 5 раз
- 4) в процессе профессиональной подготовки сократить в 8-12 раз затраты на индивидуальную работу с обучаемым.

Классификация ЭС

Единой классификации до настоящего времени пока не выработано

По задаче	По связи с	По типу ЭВМ	По степени
	реальным		интеграции
	временем		
Интерпретация	Статические	На базе	Автономные
данных		суперЭВМ	
Диагностика	Динамические	На базе	Гибридные
		мейнфреймов	(интегрированные)
Мониторинг	Квазидинамические	На базе	
		символьных	
		процессорах	
Проектирование		На базе мини	
		ЭВМ	
Прогнозирование		На базе ПК	
Планирование			
Обучение			

Уровни и этапы проектирования ЭС

Построения ЭС учитывает эволюционный характер процесса их разработки и предполагает, что на каждом уровне система совершает виток жизненного цикла разработки, состоящего из 7 этапов: идентификация; концептуализация; формализация; реализация; тестирование; уточнение; сопровождение.

Tr. D.C.	77					
Уровень проектирования ЭС	Характеристика уровня					
Демонстрационный	Система решает часть поставленной задачи,					
прототип (50-100 правил)	демонстрируя целесообразность разработки ЭС					
Исследовательский прототип	Система удовлетворительно решает всю задачу, но					
(200-500 правил)	может быть ненадежной вследствие неполного					
	тестирования					
Действующий прототип	Система проявляет высокое качество решения задачи					
(500-1000 правил)	при достаточной надежности, но для сложных задач					
	получение решения может быть недостаточно					
	эффективным по времени и (или) используемой памяти					
Промышленная система	Система показывает высокое качество, надежность и					
(1000-1500 правил)	эффективность работы в реальных условиях					
	эксплуатации					
Коммерческая система	Промышленная система, пригодная не только для					
(1000-3000 правил)	использования внутри организации - заказчика, но и для					
продажи другим потребителям						

Этапы проектирования и инструменты разработки ЭС

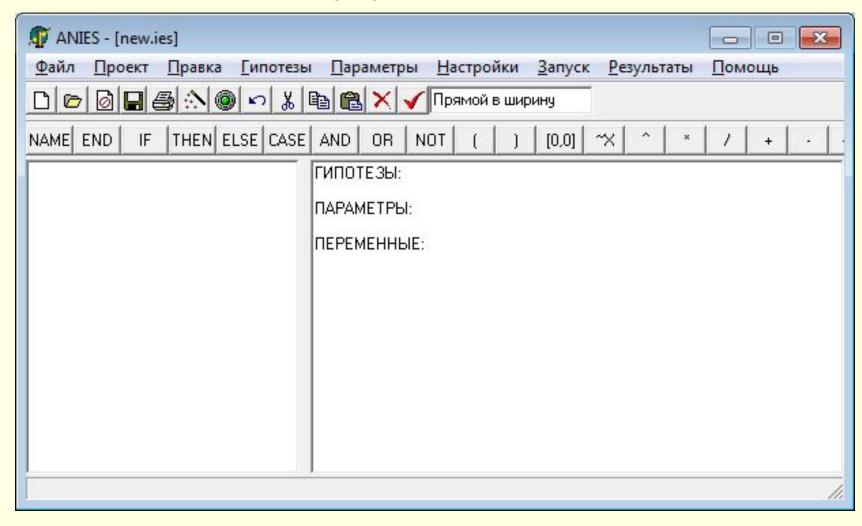
Проектирование ЭС осуществляется в три этапа:

1. АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ (ОПРЕДЕЛЯТСЯ ГИПОТЕЗЫ И ПАРАМЕТРЫ) СОСТАВЛЯЕТСЯ ТАБЛИЦА СООТВЕТСТВИЯ

Π	Гипотезы:	Параметры						
	Автомоби	класс кузова	надежно	Страна	двигат	цвет	цена	назначен
	ЛИ		сть		ель			ие
	Bently	кабриолет	высокая	Англия	V10	черный	высокая	спорт.
	BMW	джип	высокая	Германия	V8	серебр	высокая	внедорож
	Pegout	седан	высокая	Франция	V6	серебр	средняя	спорт.

2. Выбор способа представления данных

- логические модели
- сетевые модели
- продукционные модели
- фреймовые модели


3. ВЫБОР ИНСТРУМЕНТАЛЬНЫХ СРЕДСТВ РАЗРАБОТКИ ЭС

- Символьные языки, ориентированные на создание экспертных систем и систем искусственного интеллекта (LISP, SMALLTALK).
- Языки инженерных знаний (языки высокого уровня, ориентированные на построение экспертных систем: PROLOG, OPS –5)
- Системы автоматической разработки экспертных систем, ориентированные на знания: ART, TIMM.
- Оболочки экспертных систем: EMYCIN, ЭКСПЕРТ, **ANIES**. Они составляют 50 60% всех экспертных систем. Трудозатраты по созданию на них конкретных систем минимальны, так как они представляют собой пустую ЭС

Работа с программой ANIES

Инструментальная экспертная система □ANIES□ является обучающей программой, предназначенной для демонстрации возможностей, которые предоставляют продукционные правила при логическом выводе

Структура интерфейса

Работа с программой ANIES

При запуске программы открывается пустой проект ЭС. В процессе работы программы образуются файлы баз знаний *.ies, хранящие ЭС пользователя. Все файлы хранятся в текстовом формате. Принципы работы с базой знаний и правил как в обычном текстовом редакторе

Порядок работы

1.При помощи текстового редактора либо используя режим вставки при помощи пункта меню "Ввод данных" и панели ключевых слов, специалист по ИИ создает структуру Б3, с использованием продукционных правил .

Значения гипотез и параметров записываются в фигурных скобках дерево {ёлка, сосна, берёза}

Значения <u>коэффициентов уверенности посылки</u> параметров и выражений записываются в квадратных скобках

THEN дерево берёза [0,5], дерево сосна [0,5], дерево ёлка [-0,5]

- 2. После запуска ЭС пользователь вводит ответы на запрашиваемые системой вопросы с указанием коэффициента уверенности заключения в диапазоне [-1;1]. Отвечая, на один вопрос пользователь может указать несколько ответов или ни одного. Отсутствие ответа интерпретируется как коэффициент равный нулю.
- 3. Система, используя машину логического вывода, производит подсчет всех заключений и отображает перечень гипотез. При желании пользователь может просмотреть ход срабатывания правил экспертной системы в виде протокола решения

Создание продукционных правил

Структура базы знаний предусматривает использование продукционных правил "IF-THEN-ELSE" и "CASE". В приведенном ниже примере Правило1 может быть реализовано с помощью правил "IF-THEN-ELSE" или с помощью оператора "CASE".

IF-THEN-ELSE

NAME Правило1

IF на_занятиях неусидчив

THEN темперамент холерик [0,5]

ELSE

IF на_занятиях энергичен

THEN темперамент сангвиник [0,5]

ELSE

IF на_занятиях спокоен

THEN темперамент флегматик [0,5]

ELSE темперамент меланхолик [0,5]

END

меланхолик [0,5]

END

CASE

NAME Правило1
CASE на_занятиях
неусидчив темперамент холерик [0,5]
энергичен темперамент сангвиник [0,5]
спокоен темперамент флегматик [0,5]
неуверен темперамент меланхолик [0,5]
END

Синтаксис

- 1. Все правила "IF-THEN-ELSE" и "CASE" должны заканчиваться на "END".
- 2. Все правила "IF-THEN-ELSE" должны обязательно содержать слово ELSE.
- 3. При написании гипотез, параметров, наименований правил вместо пробелов необходимо использовать знаки подчёркивания, H-p, на_ уроках
- 4. При составлении циклов "IF-THEN-ELSE" необходимо проставлять все ключевые слова: IF, THEN, ELSE, даже в случае отсутствия операторов

Фрагмент экспертной системы

ГИПОТЕЗЫ:

дерево {ёлка, сосна, берёза}

ПАРАМЕТРЫ:

оперение {листья, иголки} ветки {вверх, вниз} хвоя {короткая, длинная} кора {белая, чёрно_белая, чёрная}

ПЕРЕМЕННЫЕ:

NAME Правило1 IF оперение листья AND кора чёрно_белая THEN дерево берёза [0,9] ELSE дерево берёза [-0,9] END

Домашнее задание

Определить предметную область, создать гипотезы (до 5) и параметры (до 5), оформить в виде таблицы соответствия

ПРИМЕР

Гипотезы:	Параметры						
Автомобил и	класс	надежн	Страна-	двигате	цвет	цена	назначен
	кузова	ОСТЬ	изготов итель	ЛЬ			ие
Bently	кабриоле	высока	Англия	V10	черный	высокая	спорт.
BMW	Т джип	высока	Герман	V8	серебри	высокая	внедоро
		R	ЯИ		стый		жник
Pegout	седан	высока	Франци	V6	серебри	средняя	спорт.
		Я	Я		стый		
Rover	джип	высока	Англия	V8	серебри	высокая	внедоро
		Я			стый		жник
BA3	седан	низкая	Россия	V4	серебри	низкая	семейны
					стый		й
ГАЗ	седан	низкая	Россия	V4	черный	низкая	семейны
							й