
Course Object Oriented Programming

Lecture 3

C# decision and iteration constructs.

Decision Statements

If statement

Example

int numerator, denominator;

Console.WriteLine(“Enter two integer values for the numerator and
denominator”);

numerator = Convert.ToInt32(Console.ReadLine());

denominator = Convert.ToInt32(Console.ReadLine());

if (denominator != 0)

Console.WriteLine(“{0}/{1} = {2}”, numerator, denominator,
numerator/denominator);

else

Console.WriteLine(“Invalid operation can’t divide by 0”);

The statement body can include more than one statement but make sure they
are group into a code block i.e. surrounded by curly braces.

Example

int x, y, tmp;
Console.WriteLine(“Please enter two integers”);
x = Convert.ToInt32(Console.ReadLine());
y = Convert.ToInt32(Console.ReadLine());
if (x > y)
{
tmp = x;
x = y;
y = tmp;
}

Nested if Statement

Nested if statements occur when one if statement is
nested within another if statement.

Example
if (x > 0)
if (x > 10)
Console.WriteLine(“x is greater than both 0 and 10”);
else
Console.WriteLine(“x is greater than 0 but less than or

equal to 10”);
else
Console.WriteLine(“x is less than or equal to 0”);

if - else - if operator

If a program requires a choice from one of many cases, successive if
statements can be joined together to form a if - else - if ladder.

Conditional Operator ?:

There is a special shorthand syntax that gives the same result
as

if (expression)
true_statement;
else
false_statement;

syntax: expression ? true_statement : false_statement;

The ?; requires three arguments and is thus ternary. The main
advantage of this operator is that it is succinct.

Example

max = x >= y ? x : y;

which is the equivalent of

if (x >= y)
max = x;
else
max = y;

Switch Statement

This statement is similar to the if-else-if ladder but is clearer, easier to code
and less error prone.

Example

double num1, num2, result;
char op;
Console.WriteLine(“Enter number operator number \n”);
num1 = Convert.ToInt32(Console.ReadLine());
op = Convert.ToChar(Console.ReadLine());
num2 = Convert.ToInt32(Console.ReadLine());
switch(op)
{
case “+”:
result = num1 + num2;
break;
case “-”:
result = num1 - num2;
break;
case “*”:
result = num1 * num2;
break;
case “/”:
if(num2 != 0)
{
result = num1 / num2;
break;
} //else fall through to error statement
default:
Console.WriteLine(“ERROR- invalid operation or divide by 0.0 \n”);
}
Console.WriteLine(“{0} {1},{2} = {3}\n”, num1, op, num2, result);

Iterative Statements

• For statement

• While statement

• Do while statement

• Break statement

• Continue statement

For Statement
A statement or block of statements may be repeated a known number of times using the

for statement. The programmer must know in advance how many times to iterate or
loop through the statements, for this reason the for statement is referred to as a
counted loop.

syntax:
for([initialisation];[condition];[action])
[statement_block];

Square braces indicate optional sections. Initialisation, condition and action can be
any valid C# expression, however, there are common expressions which are recom-
mended for each part.

initialisation: executed once only when the for loop is first entered, usually used to
initialise a counter variable.
condition: when this condition is false the loop terminates.
action: executed immediately after every run through statement_block and typically
increments the counter variable controlling the loop.

Example
int x;
for (x = 1; x <= 100; x++)
Console.WriteLine(“{0}”, x);

The above example prints out the numbers from 1 to 100.

Example
int x, sum = 0;
for (x = 1; x <= 100; x++)
{
Console.WriteLine(“{0}”, x);
sum += x;
}
Console.WriteLine(“Sum is {0}”, sum);

Prints the numbers from 1 to 100 and their sum.

Advanced for Loops
for(x = 0, sum = 0; x <= 100; x++)
{
Console.WriteLine(“{0}”, x);
sum += x;
}

for(x = 0, sum = 0; x <= 100; x++)
{
Console.WriteLine(“{0}”, x);
sum += x;
}

for (; x < 10; x++)
Console.WriteLine(“{0}”, x);

Advanced for Loops
int i=100,sum=0;

while(i != 0)

sum += i- -;

Console.WriteLine(“sum is {0}”, sum);

In contrast to the for statement, the while statement allows us to
loop through a statement block when we don’t know in advance
how many iterations are required.

syntax:
while(condition)
statement_body;

Example
int sum = 0, i = 100;
while(i != 0) // this condition evaluates to true once i is not equal to 0

sum += i- -; // note postfix decrement operator, why?

Console.WriteLine(“sum is {0}”, sum);

This program calculates the sum of 1 to 100.

While Statement

Like for loops while loops may also be nested.
Example

A program to guess a letter

char ch, letter = “c”, finish = “y”;
while (finish == “y” || finish == “Y”)
{
Console.WriteLine(“Guess my letter - only 1 of 26!”);
while((ch = Convert.ToChar(Console.ReadLine())) != letter)
{
Console.WriteLine(“{0} is wrong - try again\n”, ch);
}
Console.WriteLine(“OK you got it \n Lets start again.\n”);
letter += (char)3;
Console.WriteLine(“Do you wish to continue (Y/N)?”);
finish = Convert.ToChar(Console.ReadLine());
}

Do While Statement
In both the for and while statements the test condition is evaluated before the

statement_body is executed. This means that the statement_body might never be
executed. In the do while statement the statement_body is always executed at least
once because the test condition is at the end of the body of the loop.

syntax:
do
{
statement_body;
} while (condition);

Example
Keep reading in integers until a value between 1 and 10 is entered.

int i;
do
{
i = Convert.Toint32(Console.ReadLine());
} while(i >= 1 && i <= 10);

Break Statement
When a break statement is encountered in a for, while, do

while or switch statement the statement is immediately
terminated and execution resumes at the next statement
following the loop/switch statement.

Example

for (x = 1; x <= 10 ; x++)
{
if (x > 4)
break;
Console.Write(“{0} “, x);
}
Console.WriteLine(“Next executed”);

Output is 1 2 3 4 Next executed

Continue Statement
The continue statement terminates the current iteration of a

for, while or do while statement and resumes execution
back at the beginning of the statement_body of the loop
with the next iteration.

Example

for (x = 1; x <= 5; x++)
{
if (x == 3)
continue;
Console.Write(“{0} “, x);
}
Console.WriteLine(“Finished loop\n”);

output is 1 2 4 5 Finished loop.

Thank you!

