8. Concurrency

1. Threads



Concurrency

* A single application is often expected to do
more than one thing at a time

» Software that can do such things is known
as concurrent software

» Since version 5.0, the Java platform has
also included high-level concurrency APls

InfopulseTraining Center 2



Processes

* A process has a self-contained execution
environment

* A process generally has a complete,
private set of basic run-time resources (e.g
Oown memory space)

* A Java application can create additional
processes using a ProcessBuilder object.

 Multiprocess applications are beyond
the scope of this lesson

InfopulseTraining Center 3



Threads |

* Threads are sometimes called lightweight
processes

* Both processes and threads provide an
execution environment, but creating a new
thread requires fewer resources than
creating a new process.

* Threads exist within a process — every
process has at least one thread

InfopulseTraining Center 4



Threads II

* Threads share the process's resources,
iIncluding memory and open files

* From the application programmer's point
of view, you start with just one thread,
called the main thread

* This thread has the ability to create
additional threads

InfopulseTraining Center



Defining a Thread

* An application that creates an instance of
Thread must provide the code that will run
in that thread:

— Provide a Runnable object.
— Create Thread Subclass.

InfopulseTraining Center



Runnable Object

* The Runnable interface defines a single
method, run, meant to contain the code
executed in the thread

. T
-
. T

ne Runnable object is passed to the
nread constructor

nread’s start method is called

InfopulseTraining Center



Runnable Object Example

public class HelloRunnable implements
Runnable {

public void run() {
System.out.printin("Hello from a thread!");

J

public static void main(String argsl]) {
(new Thread(new HelloRunnable())).start();

J
J

InfopulseTraining Center 8



Runnable Object in Java 8

public static void main(String args|]) {
Runnable r =

() -=> System.out.printin("Hello world!);
new Thread(r).start();



Thread Subclass

* The Thread class itself implements
Runnable, though its run method does
nothing

* An application can subclass Thread,
providing its own implementation of run

InfopulseTraining Center 10



Thread Subclass Example

public class HelloThread extends Thread {

public void run() {
System.out.printin("Hello from a thread!");

J

public static void main(String argsl]) {
(new HelloThread()).start();

J
J

InfopulseTraining Center 11



Runnable vs Thread Subclass

* A Runnable object employment is more
general, because the Runnable object can
subclass a class other than Thread

* Thread subclassing is easier to use in
simple applications, but is limited by the
fact that your task class must be a
descendant of Thread

* A Runnable object is applicable to the
high-level thread management APIs

InfopulseTraining Center 12



Pausing Execution with Sleep

* Thread.sleep causes the current thread to
suspend execution for a specified period

» This is an efficient means of making
processor time available to the other
threads of an application or other
applications that might be running on a
computer system

* The sleep period can be terminated by
Interrupts

InfopulseTraining Center 13



Sleep Example

public class SleepMessages {

public static void main(String argsl[]) throws
InterruptedException {

String importantinfo[] = { "Mares eat oats”,
"Does eat oats”, "Little lambs eat ivy",
"A kid will eat ivy too"};

for (inti = 0; i <importantinfo.length; i++) {
Thread.sleep(4000);
System.out.printin(importantinfoli]);

InfopulseTraining Center

14



Thread Race Example

* Create two classes: first implements
Runnable interface, and second extends
Thread class. Method run() in both classes
prints thread and iteration numbers and
sleeps in some seconds.

InfopulseTraining Center 15



Thread Race Example

* See 811 ThreadRace project for the full
text.

InfopulseTraining Center

16



Thread Terminations

A thread terminates when:

— its run method returns, by executing a return
statement

— after executing the last statement in the
method body

— iIf an exception occurs that is not caught in the
method

* The interrupt method can be used to
request termination of a thread

InfopulseTraining Center 17



Interrupted Status

* When the interrupt method is called on a
thread, the interrupted status of the thread
IS set

* This is a boolean flag that is present in
every thread

* Each thread should occasionally check
whether it has been interrupted

InfopulseTraining Center 18



How to Check Interrupted Status

 To find out whether the interrupted status was
set, first call the static Thread.currentThread
method to get the current thread and then call
the isInterrupted method:

while (IThread.currentThread().isInterrupted())

{

do more work

;

InfopulseTraining Center 19



InterruptedException

 If a thread is blocked, it cannot check the
Interrupted status

* This is where the InterruptedException
comes in

* When the interrupt method is called on a
thread that blocks on a call such as sleep
or wait, the blocking call is terminated by
an InterruptedException

InfopulseTraining Center 20



InterruptedException Example

for (int 1= 0; i < importantinfo.length; i++) {
// Pause for 4 seconds
try { Thread.sleep(4000); }
catch (InterruptedException e) {
return;

J

System.out.printin(importantinfoli));

InfopulseTraining Center 21



Joins

* The join method allows one thread to wait for the
completion of another

 |f tis a Thread object whose thread is currently
executing, t.join() causes the current thread to
pause execution until t's thread terminates

* Overloads of join allow the programmer to
specify a waiting period

* join responds to an interrupt by exiting with an
InterruptedException

InfopulseTraining Center 22



Join Exercise

* Modify 811 ThreadRace project so that first
thread should wait for second thread
finishing

InfopulseTraining Center 23



ThreadRace Class

public static void main(String[] args) throws
InterruptedException{

ThreadRunnab r = new ThreadRunnab();
Thread t1 = new Thread(r);

Thread t2 = new ThreadThread();
r.setThread(t2);

t1.start();

t2.start();

InfopulseTraining Center 24



e See 812

Join Exercise

hreadJoin project for the full text.

InfopulseTraining Center 25



Thread Priority

* public final void setPriority(int newPriority) -
changes the priority of this thread

* public final int getPriority() - returns this
thread's priority

InfopulseTraining Center 26



Sharing Resources Example

* Try to generate Fibonacci series in one
thread and print its values in another
thread

InfopulseTraining Center

27



Sharing Resources Example

» See 813Resources project for the full text.

InfopulseTraining Center 28



Manuals

* http://docs.oracle.com/javase/tutorial/esse
ntial/concurrency/index.html

InfopulseTraining Center 29



