
8. Concurrency

1. Threads

Concurrency

• A single application is often expected to do
more than one thing at a time

• Software that can do such things is known
as concurrent software

• Since version 5.0, the Java platform has
also included high-level concurrency APIs

* InfopulseTraining Center 2

Processes
• A process has a self-contained execution

environment
• A process generally has a complete,

private set of basic run-time resources (e.g
own memory space)

• A Java application can create additional
processes using a ProcessBuilder object.

• Multiprocess applications are beyond
the scope of this lesson

* 3InfopulseTraining Center

Threads I

• Threads are sometimes called lightweight
processes

• Both processes and threads provide an
execution environment, but creating a new
thread requires fewer resources than
creating a new process.

• Threads exist within a process — every
process has at least one thread

* 4InfopulseTraining Center

Threads II

• Threads share the process's resources,
including memory and open files

• From the application programmer's point
of view, you start with just one thread,
called the main thread

• This thread has the ability to create
additional threads

* 5InfopulseTraining Center

Defining a Thread

• An application that creates an instance of
Thread must provide the code that will run
in that thread:
– Provide a Runnable object.
– Create Thread Subclass.

* InfopulseTraining Center 6

Runnable Object

• The Runnable interface defines a single
method, run, meant to contain the code
executed in the thread

• The Runnable object is passed to the
Thread constructor

• Thread’s start method is called

* InfopulseTraining Center 7

Runnable Object Example
public class HelloRunnable implements

Runnable {
 public void run() {
 System.out.println("Hello from a thread!");
 }
 public static void main(String args[]) {

 (new Thread(new HelloRunnable())).start();
 }
}
* InfopulseTraining Center 8

Runnable Object in Java 8

public static void main(String args[]) {
Runnable r =

() -> System.out.println("Hello world!");
 new Thread(r).start();

}

Thread Subclass

• The Thread class itself implements
Runnable, though its run method does
nothing

• An application can subclass Thread,
providing its own implementation of run

* InfopulseTraining Center 10

Thread Subclass Example

public class HelloThread extends Thread {
public void run() {

System.out.println("Hello from a thread!");
}
public static void main(String args[]) {
(new HelloThread()).start();
}

}
* InfopulseTraining Center 11

Runnable vs Thread Subclass
• A Runnable object employment is more

general, because the Runnable object can
subclass a class other than Thread

• Thread subclassing is easier to use in
simple applications, but is limited by the
fact that your task class must be a
descendant of Thread

• A Runnable object is applicable to the
high-level thread management APIs

* InfopulseTraining Center 12

Pausing Execution with Sleep
• Thread.sleep causes the current thread to

suspend execution for a specified period
• This is an efficient means of making

processor time available to the other
threads of an application or other
applications that might be running on a
computer system

• The sleep period can be terminated by
interrupts

* InfopulseTraining Center 13

Sleep Example
public class SleepMessages {

public static void main(String args[]) throws
InterruptedException {

String importantInfo[] = { "Mares eat oats",
"Does eat oats", "Little lambs eat ivy",
"A kid will eat ivy too"};

for (int i = 0; i < importantInfo.length; i++) {
Thread.sleep(4000);
System.out.println(importantInfo[i]);

 }
 }
}
* InfopulseTraining Center 14

Thread Race Example

• Create two classes: first implements
Runnable interface, and second extends
Thread class. Method run() in both classes
prints thread and iteration numbers and
sleeps in some seconds.

* InfopulseTraining Center 15

Thread Race Example

• See 811ThreadRace project for the full
text.

* InfopulseTraining Center 16

Thread Terminations

• A thread terminates when:
– its run method returns, by executing a return

statement
– after executing the last statement in the

method body
– if an exception occurs that is not caught in the

method
• The interrupt method can be used to

request termination of a thread
* InfopulseTraining Center 17

Interrupted Status

• When the interrupt method is called on a
thread, the interrupted status of the thread
is set

• This is a boolean flag that is present in
every thread

• Each thread should occasionally check
whether it has been interrupted

* InfopulseTraining Center 18

How to Check Interrupted Status

• To find out whether the interrupted status was
set, first call the static Thread.currentThread
method to get the current thread and then call
the isInterrupted method:

while (!Thread.currentThread().isInterrupted())
{

do more work
}

* InfopulseTraining Center 19

InterruptedException

• If a thread is blocked, it cannot check the
interrupted status

• This is where the InterruptedException
comes in

• When the interrupt method is called on a
thread that blocks on a call such as sleep
or wait, the blocking call is terminated by
an InterruptedException

* InfopulseTraining Center 20

 InterruptedException Example

for (int i = 0; i < importantInfo.length; i++) {
 // Pause for 4 seconds

try { Thread.sleep(4000); }
catch (InterruptedException e) {

return;
 }
 System.out.println(importantInfo[i]);
}
* InfopulseTraining Center 21

Joins

• The join method allows one thread to wait for the
completion of another

• If t is a Thread object whose thread is currently
executing, t.join() causes the current thread to
pause execution until t's thread terminates

• Overloads of join allow the programmer to
specify a waiting period

• join responds to an interrupt by exiting with an
InterruptedException

* InfopulseTraining Center 22

Join Exercise

• Modify 811ThreadRace project so that first
thread should wait for second thread
finishing

* InfopulseTraining Center 23

ThreadRace Class

public static void main(String[] args) throws
InterruptedException{

ThreadRunnab r = new ThreadRunnab();
Thread t1 = new Thread(r);
Thread t2 = new ThreadThread();
r.setThread(t2);
t1.start();
t2.start();

}
* InfopulseTraining Center 24

Join Exercise

• See 812ThreadJoin project for the full text.

* InfopulseTraining Center 25

Thread Priority

• public final void setPriority(int newPriority) -
changes the priority of this thread

• public final int getPriority() - returns this
thread's priority

* InfopulseTraining Center 26

Sharing Resources Example

• Try to generate Fibonacci series in one
thread and print its values in another
thread

* InfopulseTraining Center 27

Sharing Resources Example

• See 813Resources project for the full text.

* InfopulseTraining Center 28

Manuals

• http://docs.oracle.com/javase/tutorial/esse
ntial/concurrency/index.html

* InfopulseTraining Center 29

