Системы счисления и действия в них

План

- 1. Системы счисления. Классификация
- 2. Арифметика в двоичной системе счисления
- 3. Представление чисел в памяти компьютера

Система счисления

Алфавит X из p символов и правила записи и обработки чисел с помощью символов этого алфавита называются системой счисления (нумерацией) с основанием \mathbf{p} .

Число x в системе счисления с основанием \mathbf{p} обозначается как $(\mathbf{x})_{\mathbf{p}}$ или $\mathbf{x}_{\mathbf{p}}$.

Система счисления и кодирование

Любая система счисления — это система кодирования числовых величин, позволяющая выполнять операции кодирования и декодирования.

По любой количественной величине можно однозначно найти ее кодовое представление и по любой кодовой записи — восстановить соответствующую ей числовую величину.

Классификация СС

Системы счисления

Непозиционные

Вес цифры (или символа алфавита) не зависит от ее места в записи числа или слова.

Позиционные

Вес цифры (или символа алфавита) зависит от ее места в записи числа или слова.

Непозиционные СС

Непозиционная система счисления — древняя Римская система записи чисел.

Алфавит системы:

$$\bullet$$
 I = 1

$$\diamond$$
 V = 5

$$X = 10$$

$$L = 50$$

$$\bullet$$
 C = 100

$$\bullet$$
 D = 500

$$M = 1000$$

Непозиционные СС

Примеры римских чисел:

$$III = 3$$
, $IV = 4$, $V = 5$, $VI = 6$, $IX = 9$, $XI = 11$, $DCL = 650$.

Запись числа в этой системе получается двусторонней конкатенацией, причем правая конкатенация ассоциируется с добавлением, а левая конкатенация — с убавлением (например, IV и VI).

Все позиционные системы счисления строятся по общему принципу: определяется величина q — основание системы, а любое число «а» записывается в виде комбинации степеней веса р от 0-й степени до степени s.

Пусть q - натуральное число большее 1 и $M=\{0, 1, ..., q-1\}$.

Говорят, что натуральное число "а" записано в позиционной системе с основанием q, если

$$a = a_s q^s + a_{s-1} q^{s-1} + ... + a_1 q + a_0$$

где s - целое неотрицательное, $a_0, ..., a_s \in M$ и $a_s \neq 0$.

Если каждое число множества М={0, 1, ..., q-1} обозначено специальным символом, то эти символы называются цифрами q-ичной позиционной системы.

Запись числа в q-ичной позиционной системе счисления выглядит так:

$$a = (a_s a_{s-1} a_{s-2} ... a_1)_q$$

Принятая система записи числа основана на том, что q единиц каждого разряда объединяются в одну единицу соседнего, более старшего разряда.

Это дает возможность проводить арифметические действия в любой позиционной системе счисления по тем же правилам, что в десятичной системе счисления.

Наиболее используемые в информатике системы счисления:

- двоичная, над алфавитом $X = \{0,1\}$;
- восьмеричная, над $X = \{0, 1, 2, 3, 4, 5, 6, 7\};$
- шестнадцатеричная, над X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}, где символы A, B, C, D, E, F имеют десятичные веса 10, 11, 12, 13, 14, 15.

Примеры:

$$A6F_{16} =$$

$$A,B_{16} = 1$$

Перевод чисел

Общая задача перевода чисел из одной системы счисления в другую:

Дано:

$$\mathbf{x} = (\mathbf{p}_{\mathbf{n}} \mathbf{p}_{\mathbf{n-1}} \dots \mathbf{p}_{\mathbf{0}} \mathbf{p}_{-1} \mathbf{p}_{-2} \dots)_{\mathbf{p}}$$
 $\mathbf{p}_{\mathbf{i}} - \mathbf{u} \mathbf{\phi} \mathbf{p} \mathbf{b} \mathbf{p} - \mathbf{u} \mathbf{v} \mathbf{h} \mathbf{o} \mathbf{u} \mathbf{c} \mathbf{u} \mathbf{c} \mathbf{m} \mathbf{b} \mathbf{l}.$

Найти:

$$\mathbf{x} = (\mathbf{q}_{s} \mathbf{q}_{s-1} ... \mathbf{q}_{0} \mathbf{q}_{-1} \mathbf{q}_{-2} ...)_{\mathbf{q}}$$
 \mathbf{q}_{j} — искомые цифры \mathbf{q} -ичной системы.

Перевод Q->P

Запись и вычисление значения полинома

$$X = x_n q^{n} + x_{n-1} q^{n-1} + ... + x_1 q^{1} + x_0 q^{0} + x_{-1} q^{-1} + ... + x_{-m} q^{-m}$$

где все цифры х_і и число q заменяются их ричными изображениями и все требуемые операции выполняются в ричной системе счисления.

Пример:

- \bullet Перевести (371)₈ в X_{10}
- \clubsuit Перевести (AF,4)₁₆ в X_{10}

Решение:

$$(371)_8 = (3 \cdot 8^2 + 7 \cdot 8^1 + 1 \cdot 8^0)_{10} = (3 \cdot 64 + 7 \cdot 8 + 1)_{10} = (249)_{10}$$

$$(AF,4)_{16} = (10 \cdot 16^{1} + 15 \cdot 16^{0} + 4 \cdot 16^{-1})_{10} = (160 + 15 + 0.25)_{10}$$

= 175,25₁₀

Перевод Р->Q

- Перевод целой части числа
- № Перевод дробной части числа (его мантиссы)

Перевод Р->Q (целая часть)

N – целое число в р-ичной системе счисления.

 $N=(q_sq_{s-1}...q_1q_0)_Q$, где искомые цифры определяются по следующим рекуррентным формулам:

$$\mathbf{q_i} = \mathbf{Q} \left\{ \frac{N_i}{Q} \right\}$$
остаток от деления N на Q

$$N_{i+1} = \left[\frac{N_i}{Q} \right]$$
 целая часть от деления N на Q

 $i=0,1,2,...; N_0=N$ и процесс продолжается до тех пор, пока не станет $N_{i+1}=0$.

Пример:

 \bullet Перевести N=(3060)₁₀ в X₁₆

Решение:

Таким образом,
$$q_0 = (4)_{16}$$
, $q_1 = (15)_{16}$, $q_2 = (11)_{16}$ N=(BF4)₁₆

Перевод P->Q (дробная часть)

Пусть x - правильная дробь (0<x<1), заданная в p-ичной системе счисления.

Тогда $x=(0,q_{-1}q_{-2}...q_{-m})_Q$, где искомые цифры определяются по следующим рекурентным формулам:

$$q_{-(i+1)} = [x_i \cdot Q], x_{i+1} = \{x_i \cdot Q\}, i=0, 1, 2, ...; x_0 = x$$

и процесс продолжается до тех пор, пока не будет получено $x_{i+1}=0$ либо не будет достигнута требуемая точность изображения числа.

Пример:

Перевести N= $(0,2)_{10}$ в X_2

Решение:

X=0,00110011...

Перевод произвольных чисел

Пусть x>1 — произвольное число, заданное своим изображением в системе счисления с основанием P.

Подберем число $M=Q^k$, чтобы число X/M<1.

Полученную правильную дробь можно перевести в Q-ичную систему с использованием только операций умножения.

Для получения Q-ичного изображения исходного числа х достаточно результат умножить на Q^k , что равносильно перенесению запятой в Q-ичном изображении числа на k разрядов вправо.

Пример:

Перевести 502,5₁₀ в X₈

Решение:

- **♦** X=502,5
- **♦** Q=8.
- \bullet k=3, тогда M=8₃=512.
- **\$** 502,5/512=0,9814453125
- № После перевода умножением полученной дроби получаем: 0,7664₈.
- Выполним умножение на 8^3 , т.е. перенесем запятую на 3 разряда вправо и получим результат: $766,4_8$.

Смешанные СС

Системы счисления, в которых каждый коэффициент р-ичного разложения числа записывается в q-ичной системе, q<p смещанными.

В такой системе р называется старшим основанием, q —младшим основанием, а сама смешанная система называется q-р - ичной.

Смешанные СС

925₁₀ в двоично-десятичной системе записывается в виде 1001 0010 0101

Эта запись отличается от двоичного изображения данного числа.

В двоичной системе счисления это десятичное число 2341, а не исходное 925.

Смешанные СС

Пусть $p=q^L$, (L — целое положительное число).

Тогда запись какого либо числа в p-qичной системе счисления тождественно совпадает с изображением этого числа в системе счисления с основанием q.

Системы счисления с основанием 2

8CC	2CC			
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

16CC	2CC				
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
A	1	0	1	0	
В	1	0	1	1	
С	1	1	0	0	
D	1	1	0	1	
E	1	1	1	0	
F	1	1	1	1	

Примеры:

$$101,10111_2 = 101$$
, 101 $110_2 = 5,56_8$; 5_8 , 5_8 6_8

$$6,24_8 = 6$$
, 2 $4_8 = 110,0101_2$; 110_2 , 010_2 , 100_2

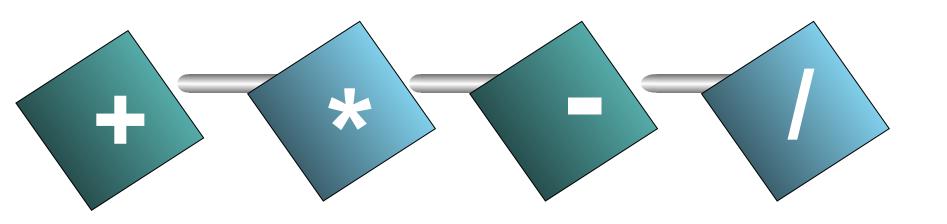
Примеры:

$$\frac{101,10111_2 = 0101}{5_{16}}, \frac{1011}{10(B)_{16}}, \frac{1000_2 = 5, B8_{16}}{8_{16}};$$

$$1A,F3_{16} = 1 \quad A \quad , \quad F \quad 3_{16} = 11010,11110011_2.$$

$$0001_2 \quad 1010_2, \quad 1111_2 \quad 0011_2$$

Арифметика в 2 СС



$$0 + 0 = 0$$
 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 10$

$$0 - 0 = 0$$
 $10 - 1 = 1$
 $1 - 0 = 1$
 $1 - 1 = 0$

Обратный код числа

Обратным кодом числа в системе с основанием р называется число в этой системе, получаемое заменой цифры, символа в каждом разряде числа на его дополнение до максимальной цифры в системе (то есть до p-1).

Пример:

Двоичное число:

10011

Обратный код:

01100

Дополнительный код числа

Дополнительный код

обратный код

+

единица в младшем разряде

Пример:

Двоичное число:

10011

Обратный код:

01100

Дополнительный код:

01100

01101

Вычитание с дополнительным кодом

A-B, если **A>B**:

- 1. Найти дополнительный код вычитаемого такой же разрядности, как и уменьшаемое
- 2. Сложить этот код с уменьшаемым.
- 3. Результатом вычитания будет полученная сумма без учета старшего разряда (отбрасывается).

Пример:

Вычитание с дополнительным кодом

A-B, если **A**<**B**:

- 1. Найти дополнительный код вычитаемого такой же разрядности, как и уменьшаемое
- 2. Сложить этот код с уменьшаемым.
- 3. Результатом вычитания будет дополнительный код к полученной сумме (лишнего разряда при сложении не появится) с отрицательным знаком.

Пример:

5 - 10 0101₂- 1010₂

$$\frac{+0101_2}{0110_2}$$
 \rightarrow дополнительный код $\frac{1011_2}{0101_2}$ \rightarrow сумма $\frac{1001_2}{01001_2}$ дополнительный код к сумме

Представление чисел

ЭВМ, создании При проектировании инструментального и прикладного программного обеспечения разработчикам приходится решать вопрос о представлении в ЭВМ числовых данных. Для решения большинства прикладных задач обычно достаточно использовать целые вещественные числа.

Представление чисел

Запись целочисленных данных в запоминающем устройстве ЭВМ не представляет затруднений: число переводится в двоичную систему и записывается в прямом коде.

Диапазон представляемых чисел в этом случае ограничивается количеством выделенных для записи разрядов.

Представление чисел

Для вещественных данных обычно используются две формы записи:

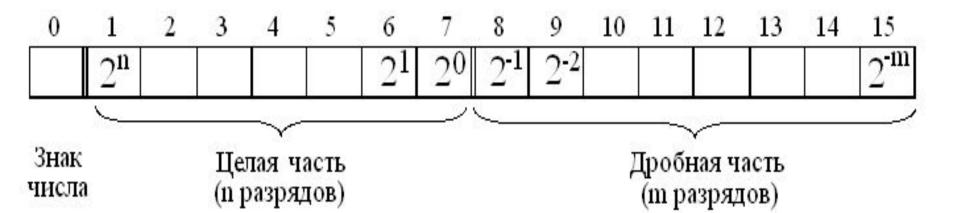
- 1. число с фиксированной точкой
- 2. число с плавающей точкой

Фиксированная точка

Форма записи числа с фиксированной точкой использовалась в основном на ранних этапах развития вычислительной техники. Запись числа с фиксированной точкой обычно имеет знаковый и цифровой разряды.

Фиксированная точка означает, что на этапе конструирования ЭВМ было определено, сколько и какие разряды машинного слова отведены под изображение целой и дробной частей числа.

Фиксированная точка



Фиксированная точка

Достоинства

Недостатки

Простота выполнения арифметических операций, высокая точность изображения чисел.

небольшой диапазон представления чисел.

Представление чисел с плавающей точкой – полулогарифмическая форма записи числа:

$$N = \pm mq \uparrow \pm p$$

где q- основание системы счисления, p - порядок числа, m - мантисса числа N.

Положение точки определяется значением порядка р.

С изменением порядка точка перемещается (плавает) влево или вправо.

Пример:

Влево:

$$125_{10} =$$

$$=12.5*10^{1}$$

$$=1.25*10^2$$

$$=0.125*10^3$$

$$=0.0125*10^4$$

• • •

Вправо:

$$125_{10} =$$

$$=1250*10^{-1}$$

$$=12500*10^{-2}$$

$$=125000*10^{-3}$$

$$=1250000*10^{-4}$$

. . .

Для установления однозначности при записи чисел принята нормализованная форма записи числа.

Мантисса нормализованного числа может изменяться в диапазоне: $1/q \le |m| < 1$.

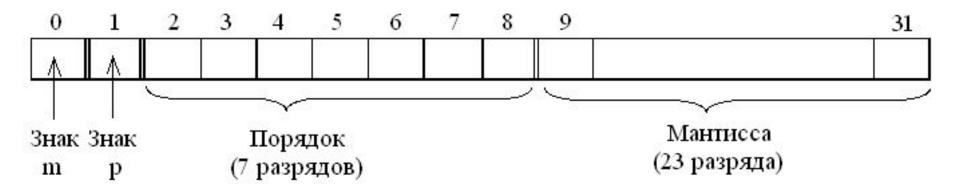
В нормализованных числах цифра после точки должна быть значащей.

$$0.0832 \cdot 10^3 = 0.832 \cdot 10^2$$

ненормализованное число нормализованное число

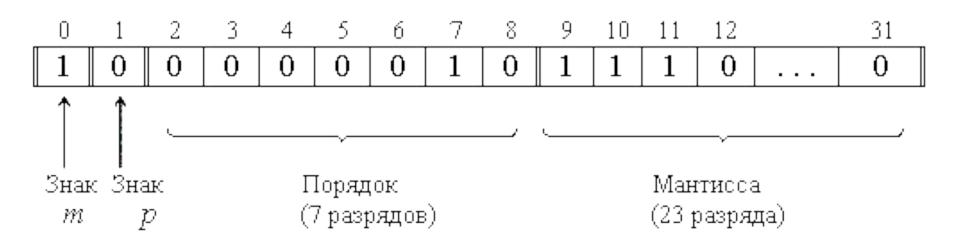
Для представления чисел в машинном слове выделяют группы разрядов для изображения:

- 1. мантиссы,
- 2. порядка,
- 3. знака числа,
- 4. знака порядка.



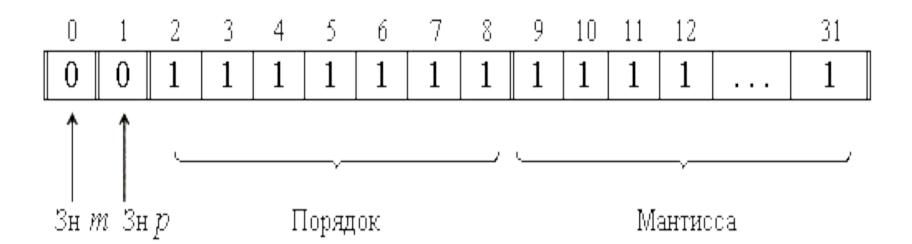
Пример:

Число $A=-11.12=-0.111\cdot 10^{10}$



Максимальным числом представимым в формате слова будет

$$A = (0.1111...1 \cdot 10^{1111111})2 = (1 \cdot 2^{127})_{10}$$



Числа с плавающей точкой позволяют увеличить диапазон обрабатываемых чисел, но при этом точность изображения чисел определяется только разрядами мантиссы и уменьшается по сравнению с числами с фиксированной точкой.

Вопросы для самостоятельного изучения

- 1. Чем отличается нормальная форма представления числа от нормализованной формы?
- 2. С какой целью отрицательные числа записываются в дополнительном коде в памяти ЭВМ?
- 3. Что такое машинный порядок и для чего он нужен?