Представление целого числа в системах счисления

Система счисления это способ записи чисел с помощью заданного набора специальных знаков (цифр).

Системы счисления делятся на 2 группы позиционная непозиционная

Система счисления, в которой значение цифры зависит от ее позиции в записи числа.

Например, в числе **757**,**7** первая семерка означает **7 сотен**, вторая – **7единиц**, а третья – **7 десятых** долей единицы.

Система счисления, в которой значение цифры не зависит от ее позиции в записи числа.

Так, в римской системе счисления в числе **XXXII** (тридцать два) вес цифры **X** в любой позиции равен просто **десяти**.

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления это количество цифр используемых системой счисления.

За основание системы можно принять любое натуральное число — два, три, четыре и т.д.

Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д.

Например:

 113_{10} 35_{10} 100_{8} 10010100_{2} 203_{8} 100000111_{2}

Какие системы счисления используют специалисты для общения с компьютером?

Кроме десятичной широко используются системы с основанием, являющимся *целой степенью числа 2*, *а именно*:

- двоичная (используются цифры 0, 1);
- **восьмеричная** (используются цифры 0, 1, ..., 7);
- **шестнадцатеричная** (для первых целых чисел от нуля до девяти используются цифры 0, 1, ..., 9, а для следующих чисел от десяти до пятнадцати в качестве цифр используются символы A, B, C, D, E, F).

Bonpoc:

Верно ли утверждение: Число 230 записано в троичной системе счисления?

Ответ:

Нет, троичная система счисления состоит из цифр: 0, 1, 2.

<u> 10 - я</u>	<u>2 - я</u>	<u>8 - я</u>	<u> 16 - я</u>
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9

<u> 10 - я</u>	<u>2 - я</u>	<u>8 - я</u>	<u> 16 - я</u>
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления. Прочитайте шуточное стихотворение «Необыкновенная девочка» и попробуйте разгадать загадку поэта. Для этого выпишите упомянутые в стихотворении числа и переведите их в десятичную систему счисления. Ей было 1100 лет.

Она в 101 класс ходила.

В портфеле по 100 книг носила.

Всё это правда, а не бред.

Она ловила каждый звук Своими 10 - ью ушами, И 10 загорелых рук Портфель и поводок держали.

Когда пыля 10-ом ног,

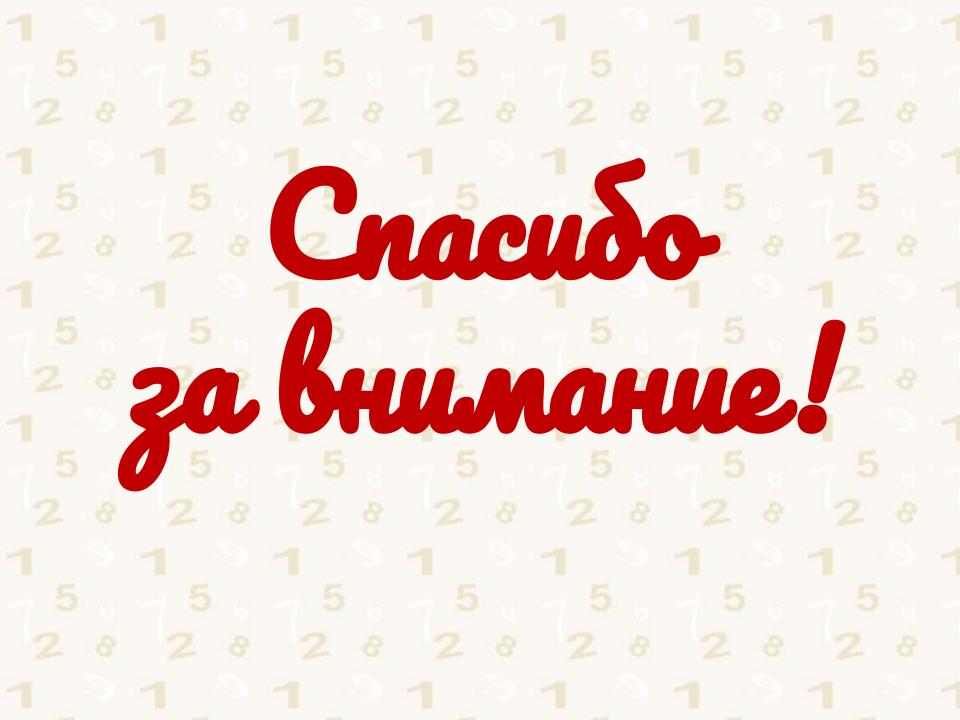
Она шагала по дороге,

За ней всегда бежал щенок

С одним хвостом, зато стоногий,

И 10 тёмно-синих глаз Оглядывали мир привычно. Но станет всё совсем обычным, Когда поймёте наш рассказ.

Представим число 67 записанное в десятичной системе счисления


в позиционных системах счисления: двоичной, восьмеричной, шестнадцатеричной.

$$67_{10} = ?_{2}$$

$$67_{10} = ?_{8}$$

$$67_{10} = ?_{16}$$

$$123_{10} = ?_{16}$$

Домашнее задание: Конспект; рабочая тетрадь № 13, 14 страница 10, № 21 страница 14; творческое задание:

Рождение цветка.

Понаблюдаем за рождением цветка: сначала появился один листочек, затем второй ... и вот распустился бутон. Постепенно подрастая, цветок показывает нам некоторое двоичное число. Если вы до конца проследите за ростом цветка, то узнаете, сколько дней ему понадобилось, чтобы вырасти.