## TEMA:

# количество и единицы измерения информации.

# 1. ФОРМА И ЯЗЫК ПРЕДСТАВЛЕНИЯ ИНФОРМАЦИИ

# Информацию можно представить в различной форме:

- знаковой письменной, состоящей из различных знаков, среди которых принято выделять:
  - символьную в виде текста, чисел, специальных символов (текст учебника)
  - графическую (географическая карта)
  - табличную (таблица записи хода физического эксперимента)

### <u>Информацию можно представить в</u> <u>различной форме:</u>

 в виде жестов или сигналов (сигналы регулировщика дорожного движения)

• устной словесной (разговор)

Основу любого языка составляет алфавит - конечный набор знаков (символов) любой природы, из которых формируется сообщение.

#### <u>Языки делятся</u>:

- естественные (разговорные)
- формальные встречаются в специальных областях человеческой деятельности (математике, физике, химии и т.д.)

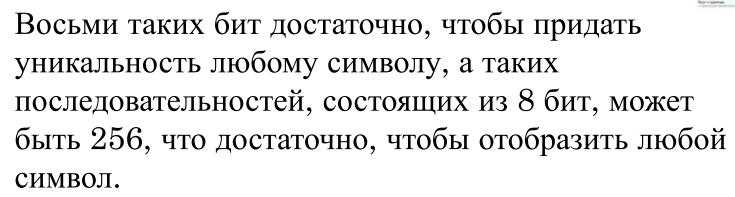
## 2. КОДИРОВАНИЕ ИНФОРМАЦИИ

Для преобразования информации в двоичные коды и обратно в компьютере должно быть организованно:

- <u>Декодировани</u>е преобразование двоичного кода в форму, понятную человеку

Кодирование обеспечивается устройствами ввода, а декодирование - устройствами вывода

# 3. ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ


 Единицы измерения объема информации в компьютере

<u>Бит</u> - это минимальная количественная характеристика информации.

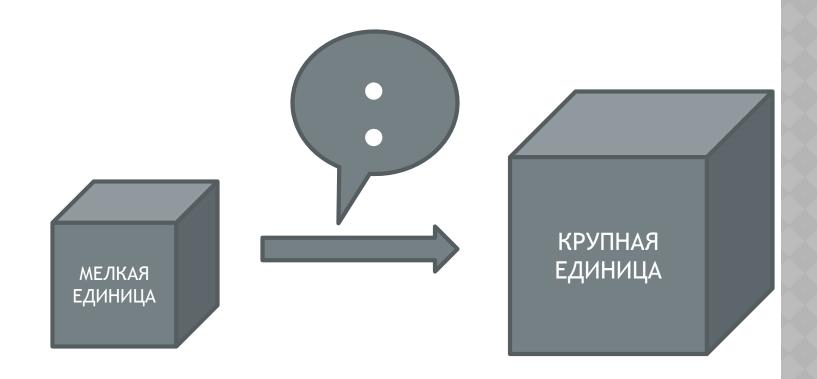
Объем информации в сообщении определяется количеством битов

Байт - минимальная единица информации, с помощью которой кодируют 1 символ.

# **БИТ** может принимать одно из двух значени 0 или 1.



Поэтому — 1 символ = 8 битам. Но информацию не считают не в символах не в битах.


Информацию считают в байтах, где 1 символ = 8 битам = 1 байту.

Байт – это единица измерения информации.

#### • Единицы измерения объема информации

| Название | Условное<br>обозначение | Соотношение с<br>другими единицами |
|----------|-------------------------|------------------------------------|
| Байт     | Байт                    | 1 Байт = 8 бит                     |
| Килобит  | Кбит                    | 1 Кбит = 1024 бит                  |
| Килобайт | Кбайт (Кб)              | 1 Кб = 1024 Байт                   |
| Мегабайт | Мбайт (Мб)              | 1 M6 = 1024 K6                     |
| Гигабайт | Гбайт (Гб)              | 1 Γ6 = 1024 M6                     |
| Терабайт | Тбайт (Тб)              | 1 T6 = 1024 Γ6                     |

#### Перевод из мелких единиц в крупные



Переведите в байты:

24 бита = 3 байта

## **ЗАДАЧА №1**

 Ученик перепечатал всю информацию, находящуюся в тетради по математике (12 листов), в компьютер, в результате у него получился текстовый документ. Какое количество информации будет содержаться в текстовом документе, если известно, что ученик писал в каждой клетке тетради? Поместится ли данный документ на CD − диске? Сколько таких документов поместится на диске?

## РЕШЕНИЕ:

- 1. клеток на 1 странице  $33 \cdot 40 = 1320$
- 2. символов во всей тетради 1320 · 24 = 31680 символов
- 3. 1 символ = 16.
- 4. 31680 символов = 316806.  $\approx 31 \text{K}6 \approx 0.03 \text{ M}6$
- 5. Ha CD диск 700 Мб
- 6. Ответ: да, поместится т.к.  $0.03 \text{ M}6 \le 700 \text{ M}6$
- 7.  $700:0,3\approx 23333$
- 8. Ответ: 23333 документа

#### ПЕРЕВЕСТИ:

- 1. 2048 байт 2..... Кб
- 2. 3 Гб → 3072 Mб
- 3. 52 Кб 52\*1024\*8 бит
- <sub>4.</sub> 3000 бит ...3... Кбит

# Пример 1: текст ИНФОРМАТИКА

11 символов

8 битов

88 битовили11 байтов

# ПРИМЕР 2: текст

Учебник - 176 страниц

Страница - 40 строк строка - 60

#### символов.

8. Каков информационный обър у у стрика?

**битов** строка

одна страница

> весь учебник

: 8

422 400 байтов

: 1024

412,5 Кбайт

: 1024

≈ 0,4 Мбайт

 Кодирование числовой информации
Числа в компьютере представляются в двоичной системе счисления

#### Кодирование текстовой информации

ASCII (для кодирование одного символа выделяется 1 байт = 8 бит)

Unicode (для кодирования одного символа выделяется 2 байта = 16 бит)

#### Кодирование звука

Звук - это непрерывный сигнал (звуковая волна) с меняющейся амплитудой и частотой.