
4. Java OOP

5. Abstract Classes. Interfaces

Abstract Classes

• An abstract class is a class that is
declared abstract

• Abstract classes cannot be instantiated,
but they can be subclassed

* 2Infopulse Training Center

Abstract Methods

• An abstract method is a method that is
declared without an implementation:

abstract void moveTo(double deltaX, double deltaY);
• If a class includes abstract methods, the

class itself must be declared abstract

* 3Infopulse Training Center

An Abstract Classes II
• A subclass of an abstract class usually provides

implementations for all of the abstract methods in
its parent class

• If it does not, the subclass must also be declared
abstract

• Abstract classes can contain fields and
implemented methods (partial implementation)

• An abstract class may have static fields and static
methods. You can use these static members with a
class reference as you would with any other class

* Infopulse Training Center 4

Example: Abstract DepoBase Class

• Modify 442InterestSum project using
DepoBase as an abstract class.

* Infopulse Training Center 5

Type Start Long Sum Rate
Simple 08.09.2013 20 1000.00 15.0
Simple 08.09.2013 20 2500.00 18.0
Barrier 08.09.2013 40 15000.00 11.5
Barrier 08.09.2013 80 5000.00 14.0
MonthCap 08.09.2013 180 2000 16.5
MonthCap 08.09.2013 91 40000 12.1

Sum = 1763.41

Example: Abstract DepoBase
Class

• See 451AbstractDepo project for the full
text

* Infopulse Training Center 6

How to Create and Use Library
• To create depo library:

– Right click on the app package -> Export ->
Java -> JAR file -> Next

– JAR file = depo.jar
– Finish

• How you can use depo.jar library:
– Create new project 451aAbstractDepo
– Right click on the project name -> Build Path
 -> Configure Build Path
– Go to Library tab -> Add External JARs -> find

and click on depo.jar -> Open -> Ok

Interfaces

• An interface is a reference type, similar to
a class, that can contain only constants,
method signatures, and nested types

• There are no method bodies
• Interfaces cannot be instantiated—they

can only be implemented by classes or
extended by other interfaces

* Infopulse Training Center 8

Defining an Interface
• An interface declaration consists of:

– modifiers
– the keyword interface
– the interface name
– a comma-separated list of parent interfaces (if

any)
– the interface body

• An interface can extend any number of
interfaces

* Infopulse Training Center 9

Interface Definition Example
public interface GroupedInterface extends

 Interface1, Interface2, Interface3 {
 // constant declarations
double E = 2.718282;
// method signatures

void doSomething (int i, double x);
int doSomethingElse(String s);

}

* Infopulse Training Center 10

The Interface Body
• The interface body contains method declarations

for all the methods included in the interface
• A method declaration within an interface is

followed by a semicolon, but no braces
• All methods declared in an interface are implicitly

public
• An interface can contain constant declarations in

addition to method declarations
• All constant values defined in an interface are

implicitly public, static, and final

* Infopulse Training Center 11

Use an Interface
• To use an interface, you write a class that

implements the interface
• When an instantiable class implements an

interface, it provides a method body for
each of the methods declared in the
interface

public class OperateBMW760i implements
GroupedInterface {

}
* Infopulse Training Center 12

Interfaces and Multiple Inheritance

• In Java, a class can inherit from only one
class but it can implement more than one
interface

• This means that if a variable is declared to
be the type of an interface, its value can
reference any object that is instantiated
from any class that implements the
interface

* Infopulse Training Center 13

Using an Interface as a Type

• You can use interface names anywhere
you can use any other data type name

• If you define a reference variable whose
type is an interface, any object you assign
to it must be an instance of a class that
implements the interface

* Infopulse Training Center 14

Exercise: InterestInterface

• Modify 442InterestSum project using
interface

* Infopulse Training Center 15

Exercise: InterestInterface

• See 452InterfaceDepo project for the full
text

* Infopulse Training Center 16

Cloning (1 of 2)

• Use clone() method to get independent
object instead of object’s assignment

• clone() method can make only a field-by-
field copy

• Cloning is correct if a class contains only
primitive fields or references to immutable
objects

• “Deep” cloning is necessary otherwise

* Infopulse Training Center 17

Cloning (2 of 2)

• The clone method is a protected method
of Object, which means that your code
cannot simply call it

• To make clone method accessible a
class must:

1. Implement the Cloneable interface
2. Redefine the clone method with the public

access modifier.

Deep Cloning

• To make a deep copy, you have clone the
mutable instance fields in the redefined
clone method

Example: DepoBase Cloning

public abstract class DepoBase implements
Cloneable{

public DepoBase clone() throws

CloneNotSupportedException{
DepoBase cln = (DepoBase)super.clone();
cln.startDate = (Date)startDate.clone();
return cln;

}

}

Interfaces in Java SE 8
• The interface body can contain:

– abstract methods (followed by a semicolon,
but no braces – it does not contain an
implementation

– default methods (are defined with
the default modifier)

– static methods (with the static keyword)
– constant declarations

Interface Default Methods
• You specify that a method definition in an interface

is a default method with the default keyword at the
beginning of the method signature

• Default method defines a default implementation
• Default methods enable you to add new

functionality to the interfaces of your libraries and
ensure binary compatibility with code written for
older versions of those interfaces

• Any class that implements the interface with
default method will have this method already
defined

Exercise: Default Method

• Modify 452InterfaceDepo project:
– Remove abstract DepoBase class
– Add calculateInterest method as default

method of the InterestInterface

Exercise: Default Method

• See 453DefaultMethod project for the full
text

Functional Interfaces

• A functional interface is any interface that
contains only one abstract method

• A functional interface may contain one or
more default methods or static methods

• The abstract method of a functional
interface can be implemented with help of
lambda expression

Lambda Expression

• A lambda expression looks a lot like a
method declaration

• You can consider lambda expressions as
anonymous methods—methods without a
name

Example of Lambda Expression I

public class Calculator {
interface IntegerMath {

int operation(int a, int b);
}
public int operateBinary(int a, int b,

IntegerMath op) {
return op.operation(a, b);

}

Example of Lambda Expression II
 public static void main(String... args) {
 Calculator myApp = new Calculator();
 IntegerMath addition = (a, b) -> a + b;
 IntegerMath subtraction = (a, b) -> a - b;
 System.out.println("40 + 2 = " +
 myApp.operateBinary(40, 2, addition));
 System.out.println("20 - 10 = " +
 myApp.operateBinary(20, 10, subtraction));
 }
}

Example of Lambda Expression

• See 454LambdaCalulator for the full text

Lambda Expression Syntax I

• A lambda expression consists of the
following:
– a comma-separated list of formal

parameters enclosed in parentheses
– the arrow token, ->
– a body, which consists of a single

expression or a statement block

Lambda Expression Syntax II

• You can omit the data type of the parameters
in a lambda expression

• You can omit the parentheses if there is only
one parameter

• If you specify a single expression, then the
Java runtime evaluates the expression and
then returns its value

• Alternatively, you must enclose statements in
braces {}

Manuals

• http://docs.oracle.com/javase/tutorial/java/I
andI/index.html

* Infopulse Training Center 32

