
4. Java OOP

4. Inheritance and Polymorphism

Inheritance Basics (1 of 3)

• Classes can be derived from other classes,
thereby inheriting fields and methods from
those classes:

class Sub extends Sup {
…

}

* Infopulse Training Center 2

Inheritance Basics (2 of 3)
• A class that is derived from another class

is called a subclass (also a derived class,
extended class, or child class).

• The class from which the subclass is
derived is called a superclass (also a base
class or a parent class).

• Every class has one and only one direct
superclass (single inheritance).

• Class Object is exception, it is a root class
* 3Infopulse Training Center

Inheritance Basics (3 of 3)

• A subclass inherits all the members (fields,
methods, and nested classes) from its
superclass

• Constructors are not members, so they
are not inherited by subclasses

• The constructor of the superclass can be
invoked from the subclass

* Infopulse Training Center 4

Members Inheritance
• A subclass inherits all of the public and

protected members of its parent, no matter
what package the subclass is in.

• If the subclass is in the same package as
its parent, it also inherits the
package-private members of the parent.

• You can use the inherited members as is,
replace them, hide them, or supplement
them with new members

* Infopulse Training Center 5

Fields Inheritance

• The inherited fields can be used directly
• You can declare a field in the subclass with

the same name as the one in the superclass,
thus hiding it (not recommended).

• You can declare new fields in the subclass
that are not in the superclass.

* Infopulse Training Center 6

What will be the output?
class A{
 int v1 = 8;
 protected double p = -5.0;
 private String s = “1234”;
}
class B extends A{
 public void doSomething(){

System.out.println(s);
}

* Infopulse Training Center 7

Class C{
 public static void

main(String[] args) {
B obj = new B();

 obj.doSomething();
 }
}

What will be the output?
class A{
 int v1 = 8;
 protected double p = -5.0;
 private String s = “1234”;
}
class B extends A{
 public void doSomething(){

System.out.println(s);
}

* Infopulse Training Center 8

Class C{
 public static void

main(String[] args) {
B obj = new B();

 obj.doSomething();
 }
}

Compilation error

What will be the output?
class A{
 int v1 = 8;
 protected double p = -5.0;
 private String s = “1234”;
}
class B extends A{
 public void doSomething(){

System.out.println(p);
}

* Infopulse Training Center 9

Class C{
 public static void

main(String[] args) {
B obj = new B();

 obj.doSomething();
 }
}

What will be the output?
class A{
 int v1 = 8;
 protected double p = -5.0;
 private String s = “1234”;
}
class B extends A{
 public void doSomething(){

System.out.println(p);
}

* Infopulse Training Center 10

Class C{
 public static void

main(String[] args) {
B obj = new B();

 obj.doSomething();
 }
}

-5.0

What will be the output?
class A{
 int v1 = 8;
 protected double p = -5.0;
 private String s = “1234”;
}
class B extends A{
 public void doSomething(){

System.out.println(v1);
}

* Infopulse Training Center 11

Class C{
 public static void

main(String[] args) {
B obj = new B();

 obj.doSomething();
 }
}

What will be the output?
class A{
 int v1 = 8;
 protected double p = -5.0;
 private String s = “1234”;
}
class B extends A{
 public void doSomething(){

System.out.println(v1);
}

* Infopulse Training Center 12

Class C{
 public static void

main(String[] args) {
B obj = new B();

 obj.doSomething();
 }
}

8 if B and A in the same package; Compilation error otherwise

Methods Inheritance

• The inherited methods can be used directly as
they are.

• You can declare new methods in the subclass
that are not in the superclass.

* Infopulse Training Center 13

What will be the output?
class A{
 int v1 = 8;
 protected void printV1(){
 System.out.println(v1);
 }
}
class B extends A{
 public void doSomething(){

 System.out.println(2 *
v1);

}

* Infopulse Training Center 14

Class C{
 public static void

main(String[] args) {
B obj = new B();

 obj.printV1();
 obj.doSomething();
 }
}

What will be the output?
class A{
 int v1 = 8;
 protected void printV1(){
 System.out.println(v1);
 }
}
class B extends A{
 public void doSomething(){

 System.out.println(2 *
v1);

}

* Infopulse Training Center 15

Class C{
 public static void

main(String[] args) {
B obj = new B();

 obj.printV1();
 obj.doSomething();
 }
}

8 16

Methods Overriding and Hiding

• You can write a new instance method in the
subclass that has the same signature as the one
in the superclass, thus overriding it.

• You can write a new static method in the
subclass that has the same signature as the one
in the superclass, thus hiding it.

* Infopulse Training Center 16

Constructors Call

• You can write a subclass constructor that
invokes the constructor of the superclass,
either implicitly or by using the keyword
super.

* Infopulse Training Center 17

Private Members in a Superclass

• A subclass does not inherit the private
members of its parent class.

• However, if the superclass has public or
protected methods for accessing its
private fields, these can also be used by
the subclass.

* Infopulse Training Center 18

Exercise 4.4.1: DepoBase class

• Modify 433DepoMonthCapitalize,
432DepoBarrier, and 431SimpleDepo
projects with help of ancestor DepoBase
class (should contain all common
elements – fields and methods)

* Infopulse Training Center 19

DepoBase Class (1 of 2)
public class DepoBase {

protected Date startDate;
protected int dayLong;
protected double sum;
protected double interestRate;

public DepoBase() {}

public DepoBase(Date startDate, int dayLong, double
sum,

 double interestRate){
this.startDate = startDate;
this.dayLong = dayLong;
this.sum = sum;
this.interestRate = interestRate; }

DepoBase Class (2 of 2)
// accessors

public double calculateInterest(LocalDate start, LocalDate
maturity){
int startYear = start.getYear();
int maturityYear = maturity.getYear();

double dayCf = start.until(maturity, ChronoUnit.DAYS)

 + 1;
 double interest = sum * (interestRate / 100.0) *

(dayCf / daysInYear);
 return interest;
}

DepoSimple Class
public class DepoSimple extends DepoBase{

public DepoSimple(){ }
public DepoSimple(Date startDate, int dayLong, double

sum, double interestRate){
super(startDate, dayLong, sum, interestRate);

}

public double getInterest(){
double interest = 0.0;

return interest;

}

* Infopulse Training Center 22

Exercise 4.4.1: DepoBase class

• See 441DepoBase projects for the full text

* Infopulse Training Center 23

Casting Objects (1 of 3)
• Casting shows the use of an object of one

type in place of another type, among the
objects permitted by inheritance:

Object obj = new ClassName();
• If, on the other hand, we write

 ClassName cn = obj;
we would get a compile-time error because
obj is not known to the compiler to be a
ClassName
* Infopulse Training Center 24

Casting Objects (2 of 3)
• We can tell the compiler to assign a

ClassName to obj by explicit casting:
ClassName cn = (ClassName)obj;

• This cast inserts a runtime check that obj
is assigned a ClassName so that the
compiler can safely assume that obj is a
ClassName

• If obj is not a ClassName at runtime, a
ClassCastException will be thrown.

* Infopulse Training Center 25

Casting Objects (3 of 3)

• You can make a logical test as to the type of a
particular object using the instanceof operator:

if (obj instanceof ClassName) {
ClassName myBike = (ClassName)obj;

}

• The test x instanceof C does not generate an

exception if x is null. It simply returns false.
* Infopulse Training Center 26

What will be the output?
class A{
 int v1 = 8;
 protected void printV1(){
 System.out.println(v1);
 }
}
class B extends A{
 public void doSomething(){

 System.out.println(2 *
v1);

}

* Infopulse Training Center 27

Class C{
 public static void

main(String[] args) {
A obj = new B();

 obj.printV1();
 obj.doSomething();
 }
}

What will be the output?
class A{
 int v1 = 8;
 protected void printV1(){
 System.out.println(v1);
 }
}
class B extends A{
 public void doSomething(){

 System.out.println(2 *
v1);

}

* Infopulse Training Center 28

Class C{
 public static void

main(String[] args) {
A obj = new B();

 obj.printV1();
 obj.doSomething();
 }
}

Compilation error “Undefined method” on line obj.doSomething();

What will be the output?
class A{
 int v1 = 8;
 protected void printV1(){
 System.out.println(v1);
 }
}
class B extends A{
 public void doSomething(){

 System.out.println(2 *
v1);

}

* Infopulse Training Center 29

Class C{
 public static void

main(String[] args) {
B obj = new A();

 obj.printV1();
 obj.doSomething();
 }
}

What will be the output?
class A{
 int v1 = 8;
 protected void printV1(){
 System.out.println(v1);
 }
}
class B extends A{
 public void doSomething(){

 System.out.println(2 *
v1);

}

* Infopulse Training Center 30

Class C{
 public static void

main(String[] args) {
B obj = new A();

 obj.printV1();
 obj.doSomething();
 }
}

Compilation error “Type mismatch” on line B obj = new A();

What will be the output?
class A{
 int v1 = 8;
 protected void printV1(){
 System.out.println(v1);
 }
}
class B extends A{
 public void doSomething(){

 System.out.println(2 *
v1);

}

* Infopulse Training Center 31

Class C{
 public static void

main(String[] args) {
B obj = (B)new A();

 obj.printV1();
 obj.doSomething();
 }
}

What will be the output?
class A{
 int v1 = 8;
 protected void printV1(){
 System.out.println(v1);
 }
}
class B extends A{
 public void doSomething(){

 System.out.println(2 *
v1);

}

* Infopulse Training Center 32

Class C{
 public static void

main(String[] args) {
B obj = (B)new A();

 obj.printV1();
 obj.doSomething();
 }
}

Runtime error “ClassCastException” on line B obj = (B)new A();

What will be the output?
class A{
 int v1 = 8;
 protected void printV1(){
 System.out.println(v1);
 }
}
class B extends A{
 public void doSomething(){

 System.out.println(2 *
v1);

}

* Infopulse Training Center 33

Class C{
 public static void

main(String[] args) {
B obj = new B();
A objA = obj;

 objA.printV1();
}

}

What will be the output?
class A{
 int v1 = 8;
 protected void printV1(){
 System.out.println(v1);
 }
}
class B extends A{
 public void doSomething(){

 System.out.println(2 *
v1);

}

* Infopulse Training Center 34

Class C{
 public static void

main(String[] args) {
B obj = new B();
A objA = obj;

 objA.printV1();
 }
}

8

Overriding Instance Methods I
• An instance method in a subclass with the same

signature and return type as an instance method
in the superclass overrides the superclass's
method

• The overriding method has the same name,
number and type of parameters, and return type
as the method it overrides.

• An overriding method can also return a subtype
of the type returned by the overridden method.
This is called a covariant return type.

* Infopulse Training Center 35

Overriding Instance Methods II

• When overriding a method, you might
want to use the @Override annotation that
instructs the compiler that you intend to
override a method in the superclass.

• The access specifier for an overriding
method can allow more, but not less,
access than the overridden method
(protected to public, but not to private)

* Infopulse Training Center 36

What will be the output?
class A{
 int v1 = 8;
 protected void printV1(){
 System.out.println(v1);
 }
}
class B extends A{
 public void printV1(){

 System.out.println(2 *
v1);

}

* Infopulse Training Center 37

Class C{
 public static void

main(String[] args) {
B obj = new B();

 obj.printV1();
}

}

What will be the output?
class A{
 int v1 = 8;
 protected void printV1(){
 System.out.println(v1);
 }
}
class B extends A{
 public void printV1(){

 System.out.println(2 *
v1);

}

* Infopulse Training Center 38

Class C{
 public static void

main(String[] args) {
B obj = new B();

 obj.printV1();
}

}

16

Hiding Static Methods (1 of 6)
public class Animal {

public static void testClassMethod() {
System.out.println("The class method in Animal.");

}
public void testInstanceMethod() {

System.out.println("The instance method in Animal.");
}

}

* Infopulse Training Center 39

Hiding Static Methods (2 of 6)

public class Cat extends Animal {
public static void testClassMethod() {

System.out.println("The class method in Cat.");
}
public void testInstanceMethod() {

System.out.println("The instance method in Cat.");
}

}

* Infopulse Training Center 40

Hiding Static Methods (3 of 6)
public static void main(String[] args) {

Animal myAnimal = new Animal();
 Animal myAnimalCat = new Cat();
 Cat myCat = new Cat();

myAnimal.testInstanceMethod();
 myAnimalCat.testInstanceMethod();
 myCat.testInstanceMethod();
}
* Infopulse Training Center 41

Hiding Static Methods (4 of 6)

Output:
• The instance method in Animal
• The instance method in Cat
• The instance method in Cat

* Infopulse Training Center 42

Hiding Static Methods (5 of 6)
public static void main(String[] args) {

Animal myAnimal = new Animal();
 Animal myAnimalCat = new Cat();
 Cat myCat = new Cat();

myAnimal.testClassMethod();
 myAnimalCat.testClassMethod();
 myCat. testClassMethod();
}
* Infopulse Training Center 43

Hiding Static Methods (6 of 6)

Output:
• The class method in Animal.
• The class method in Animal.
• The class method in Cat.

* Infopulse Training Center 44

Polymorphism (1 of 2)
• Connecting a method call to a method body is

called binding
• When binding is performed before the program

is run (e.g. by the compiler), it’s called early
binding.

• Late binding means that the binding occurs at
run time, based on the type of object

• There must be some mechanism to determine
the type of the object at run time and to call the
appropriate method

* Infopulse Training Center 45

Polymorphism (2 of 2)

• All method binding in Java uses late binding
unless the method is static or final (private
methods are implicitly final)

• You can write your code to talk to the base class
and know that all the derived-class cases will
work correctly using the same code

• Typical example: create an array of Base class
and fill it with subclasses objects. Then you can
call the same method for each object from array
elements

* Infopulse Training Center 46

Exercise 4.4.2

• Create a deposit array of different types
and calculate sum of their interest values

* Infopulse Training Center 47

Type Start Long Sum Rate
Simple 08.09.2013 20 1000.00 15.0
Simple 08.09.2013 20 2500.00 18.0
Barrier 08.09.2013 40 15000.00 11.5
Barrier 08.09.2013 80 5000.00 14.0
MonthCap 08.09.2013 180 2000 16.5
MonthCap 08.09.2013 91 40000 12.1

Sum = 1763.41

Exercise: Interest Values Sum

Date start = new GregorianCalendar(2013,
Calendar.SEPTEMBER, 8).getTime();

DepoBase[] depo = new DepoBase[6];
depo[0] = new DepoSimple(start, 20, 1000.0, 15.0);
depo[1] = new DepoSimple(start, 20, 2500.0, 18.0);
depo[2] = new DepoBarrier(start, 40, 15000.0, 11.5);
depo[3] = new DepoBarrier(start, 80, 5000.0, 14.0);
depo[4] = new DepoMonthCapitalize(start, 180, 2000.0, 16.5);
depo[5] = new DepoMonthCapitalize(start, 91, 40000.0, 12.1);

*
Infopulse Training Center

48

Exercise: Interest Values Sum

double sum = 0.0;
for(DepoBase d: depo) sum += d.getInterest();
sum = Math.round(sum * 100) / 100.0;
if (sum == 1763.41) System.out.println("Test is

true");
else System.out.println("Test failed");

}

* Infopulse Training Center 49

Exercise : Interest Values Sum

• See 442InterestSum or 442aInterestSum
project for the full text

* Infopulse Training Center 50

Hiding Fields

• Within a class, a field that has the same
name as a field in the superclass hides the
superclass's field, even if their types are
different

• Hided field in the superclass can be
accessed through super keyword

• Hiding fields is not recommended as it
makes code difficult to read

* Infopulse Training Center 51

Subclass Constructors (1 of 2)

• The syntax for calling a superclass
constructor is

super(); or: super(parameter list);
• Invocation of a superclass constructor

must be the first line in the subclass
constructor.

* Infopulse Training Center 52

Subclass Constructors (2 of 2)

• If a constructor does not explicitly invoke a
superclass constructor, the Java compiler
automatically inserts a call to the
no-argument constructor of the superclass

• If the super class does not have a
no-argument constructor, you will get a
compile-time error

* Infopulse Training Center 53

Accessing Superclass Members

• If your method overrides one of its
superclass's methods, you can invoke the
overridden method through the use of the
keyword super

* Infopulse Training Center 54

Writing Final Methods
• You use the final keyword in a method declaration to

indicate that the method cannot be overridden by
subclasses

• You might wish to make a method final if it has an
implementation that should not be changed and it is
critical to the consistent state of the object

• Methods called from constructors should generally be
declared final

• If a constructor calls a non-final method, a subclass may
redefine that method with surprising or undesirable
results

* Infopulse Training Center 55

Final Classes

• You can declare an entire class final
• A class that is declared final cannot be

subclassed
• This is particularly useful, for example,

when creating an immutable class like the
String class.

* Infopulse Training Center 56

Manuals

• http://docs.oracle.com/javase/tutorial/java/I
andI/subclasses.html

* Infopulse Training Center 57

