
3. Java Persistence API

5. Transaction Management



Database Transaction
• A database transaction is a sequence of 

actions that are treated as a single unit of 
work 

• These actions should either complete 
entirely or take no effect at all

• Transaction management is an important 
part of RDBMS oriented enterprise 
applications to ensure data integrity and 
consistency.

* 2Victor Mozharsky



ACID (1 of 2)

• Atomicity. A transaction should be treated 
as a single unit of operation which means 
either the entire sequence of operations is 
successful or unsuccessful

• Consistency. This  represents  the  
consistency  of  the  referential  integrity  
of  the database, unique primary keys in 
tables etc

* 3Victor Mozharsky



ACID (2 of 2)
• Isolation. There may be many transactions 

processing with the same data set at the 
same time, each transaction should be 
isolated from others to prevent data 
corruption

• Durability. Once a transaction has 
completed, the results of this transaction 
have to be made permanent and cannot 
be erased from the database due to 
system failure.

* 4Victor Mozharsky



Spring Transaction Management

• Spring framework provides an abstract  
layer on top of different underlying  
transaction management APIs

• Local transactions are specific to a single  
transactional resource like a JDBC  
connection

• Global transactions can span multiple  
transactional resources like transaction in  
a distributed system

* 5Victor Mozharsky



Local Transactions

• Local  transaction  management  can  be  
useful  in  a  centralized  computing  
environment  where application components 
and resources are located at a single site, 
and transaction management only involves a 
local data manager running on a single 
machine

• Local transactions are easier to be 
implemented

* 6Victor Mozharsky



Global Transactions

• Global transaction management is required in a 
distributed computing environment where all the 
resources are distributed  across multiple 
systems

• A global transaction is executed across multiple 
systems, and its execution requires coordination 
between the global transaction management 
system and all the local data managers of all the 
involved systems

* 7Victor Mozharsky



Programmatic vs. Declarative

• Spring supports two types of transaction 
management:

• Programmatic transaction management: you have 
manage the transaction with the help of 
programming. That gives you extreme flexibility, 
but it is difficult to maintain

• Declarative  transaction  management: you  
separate  transaction  management from the 
business code. You only use annotations or XML 
based configuration to manage the transactions

* 8Victor Mozharsky



Programmatic vs. Declarative

• Declarative transaction management is 
preferable over programmatic transaction 
management 

* 9Victor Mozharsky



Spring Transaction Abstractions
• The key to the Spring transaction  abstraction is 

defined by PlatformTransactionManager interface 
in the org.springframework.transaction package:

public interface PlatformTransactionManager {
     TransactionStatus getTransaction(TransactionDefinition 

definition) throws TransactionException;
      void commit(TransactionStatus status) throws 

TransactionException;
      void rollback(TransactionStatus status) throws 

TransactionException;
}

* 10Victor Mozharsky



PlatformTransactionManager

• getTransaction - returns a currently active 
transaction or create a new one, according 
to the specified propagation behavior

• commit - commits the given transaction, 
with regard to its status

• rollback - performs a rollback of the given 
transaction

* 11Victor Mozharsky



TransactionDefinition

• Is the core interface of the transaction  
support in Spring and it is defined as below:

public interface TransactionDefinition {
int getPropagationBehavior();
int getIsolationLevel();
String getName();
int getTimeout();
boolean isReadOnly();

}
* 12Victor Mozharsky



TransactionDefinition Methods
• getPropagationBehavior - returns the propagation 

behavior
• getIsolationLevel - returns the degree to which 

this transaction is isolated from the work of other 
transactions

• getName - returns the name of the transaction
• getTimeout - returns the time in seconds in which 

the transaction must complete
• isReadOnly - returns whether the transaction is 

read-only.
* 13Victor Mozharsky



 Isolation Level (1 of 2)

• TransactionDefinition.ISOLATION_DEFAULT -  the 
default isolation level

• TransactionDefinition.ISOLATION_READ_COMMITTED -
    indicates that dirty reads are prevented; non- 
    repeatable reads and phantom reads can occur
• TransactionDefinition.ISOLATION_READ_UNCOMMITTED 

-dirty reads, non-repeatable reads and phantom 
reads can occur

* 14Victor Mozharsky



 Isolation Level (2 of 2)
• TransactionDefinition.ISOLATION_REPEATABLE_READ - 

dirty reads and non-repeatable reads are prevented; 
phantom reads can occur

• TransactionDefinition.ISOLATION_SERIALIZABLE - dirty 
reads, non-repeatable reads and phantom reads are 
prevented

* 15Victor Mozharsky



Propagation Types (1 of 2)
• TransactionDefinition.PROPAGATION_MANDATORY - 

support a current transaction; throw an exception 
if no current transaction exists

• TransactionDefinition.PROPAGATION_NESTED - 
execute within a nested transaction if a current 
transaction exists

• TransactionDefinition.PROPAGATION_NEVER - do not 
support a current transaction; throw an exception 
if a current transaction exists

• TransactionDefinition.PROPAGATION_NOT_SUPPORTED - 
do not support a current transaction; rather 
always execute non-transactionally

* 16Victor Mozharsky



Propagation Types (2 of 2)
• TransactionDefinition.PROPAGATION_REQUIRED -  

support a current transaction; create a new one if 
none exists

• TransactionDefinition.PROPAGATION_REQUIRES_NEW - 
create a new transaction, suspending the current 
transaction if one exists

• TransactionDefinition.PROPAGATION_SUPPORTS - 
support a current transaction; execute 
non-transactionally if none exists

• TransactionDefinition.TIMEOUT_DEFAULT - use the 
default timeout of the underlying transaction system, 
or none if timeouts are not supported
* 17Victor Mozharsky



TransactionStatus interface
• Provides a simple way for transactional code 

to control transaction execution and query 
transaction status

public interface TransactionStatus extends SavepointManager {
boolean isNewTransaction();
boolean hasSavepoint();
void setRollbackOnly();
boolean isRollbackOnly();
boolean isCompleted();

}

* 18Victor Mozharsky



TransactionStatus Methods
• hasSavepoint - returns whether this transaction 

internally carries a savepoint, that is, has been 
created as nested transaction based on a savepoint

• isCompleted - returns whether this transaction has 
already been committed or rolled back

• isNewTransaction - returns true in case the present 
transaction is new

• isRollbackOnly - returns whether the transaction 
has been marked as rollback-only

• setRollbackOnly - sets the transaction rollback-only

* 19Victor Mozharsky



Declarative Transaction 
Management

• This approach allows you to manage the  
transaction with the help of configuration  
instead of hard coding in your source  code

1. So you can separate transaction management  
from the business code by using annotations 
or  XML based configuration to manage the 
transactions

2. The bean configuration will specify the 
methods to be transactional
* 20Victor Mozharsky



Configuring Transaction 
Management 

<bean id="transactionManager"  
      class="org.springframework.orm.jpa.JpaTransactionManager"> 

<property name="entityManagerFactory"   
      ref="entityManagerFactory"/> 

</bean>

<tx:annotation-driven transaction-manager="transactionManager"/>

* 21Victor Mozharsky



Using @Transactional
• You can place the @Transactional annotation 
before a class definition, or a public method on 

a class
• A transaction begins before method annotated 

with @Transactional. It commits after method 
ends normally, and rollbacks if 
RuntimeException occurs.

• All methods for class annotated with 
@Transactional are transactional.
* 22Victor Mozharsky



@Transactional Attributes
• propagation (Propagation.REQUIRED by default)
• Isolation (Isolation.DEFAULT by default)
• timeout (TransactionDefinition.TIMEOUT_DEFAULT)
• readonly
• rollbackFor
• rollbackForClassName
• noRollbackFor
• noRollbackForClassName

* 23Victor Mozharsky



Exercise: Insert New Customer

• Insert new record to the CUSTOMER DB 
table – this problem was solved in 
P322AddCustomer project

* Victor Mozharsky 24



New Save Interface Method 
package com.bionic.edu;
public interface CustomerDao {

public Customer findById(int id);
public void save(Customer customer);

}
public interface CustomerService {

public Customer findById(int id);
public void save(Customer customer);

}
* Victor Mozharsky 25



Save DAO Implementation
@Repository
public class CustomerDaoImpl implements CustomerDao{
    @PersistenceContext
    private EntityManager em;
    public Customer findById(int id){
       . . . . . .  . . .
    }
    public void save(Customer customer){

    em.persist(customer);
    }
}

* Victor Mozharsky 26



Save Service Implementation
@Named
public class CustomerServiceImpl implements CustomerService{
    @Inject
    private CustomerDao customerDao;
    public Customer findById(int id) { 

    return customerDao.findById(id); 
     }
     @Transactional
     public void save(Customer customer){

customerDao.save(customer);
     }
}

* Victor Mozharsky 27



Example: Payment of a New Customer

• The task is to add a payment of a new 
customer. 

• The problem is that you need to save new 
customer’s id in a Payment entity before 
the latter is saved. 

* 28Victor Mozharsky



PaymentDaoImpl Class
package com.bionic.edu;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import org.springframework.stereotype.Repository;
@Repository
public class PaymentDaoImpl implements PaymentDao{

@PersistenceContext
private EntityManager em;
public void save(Payment p){

em.persist(p);
}

}
* Victor Mozharsky 29



CustomerServiceImpl Class
    @Transactional
    public void add(Customer c, Payment p){

save(c);
p.setCustomerId(c.getId());
paymentDao.save(p);

    }
}

* Victor Mozharsky 30



Output

• INSERT on table 'PAYMENT' caused a violation of 
foreign key constraint 'CUSTOMER_FK' for key (0).

• Only external method calls can start transaction 
–any self-invocation calls will not start any 
transaction

• See 542AddCustPayment project for the full text

* Victor Mozharsky 31



CustomerServiceImpl Class
package com.bionic.edu;
import javax.inject.Inject;
import javax.inject.Named;
import org.springframework.transaction.annotation.Transactional;
@Named
public class CustomerServiceImpl implements CustomerService{
    @Inject
    private CustomerDao customerDao;
    @Transactional
    public void save(Customer c){ customerDao.save(c); } }

* Victor Mozharsky 32



PaymentServiceImpl Class
@Named
public class PaymentServiceImpl  implements PaymentService{
    @Inject
    private PaymentDao paymentDao;
    @Inject
    private CustomerService customerService;
    @Transactional
    public void add(Customer c, Payment p){

customerService.save(c);
p.setCustomerId(c.getId());
paymentDao.save(p);

    }}

* Victor Mozharsky 33



Output
• INSERT on table 'PAYMENT' caused a violation of 

foreign key constraint 'CUSTOMER_FK' for key (0).

• The reason is that propagation value of 
@Transactional annotation is REQUERED by default 
– so transaction for customerService.save(c) method 
will be commited along with 
paymentService.add(Customer c, Payment p) method

• See P362AddCustPayment project for the full text

* Victor Mozharsky 34



CustomerServiceImpl Class
package com.bionic.edu;
import javax.inject.Inject;
import javax.inject.Named;
import org.springframework.transaction.annotation.Transactional;
@Named
public class CustomerServiceImpl implements CustomerService{
    @Inject
    private CustomerDao customerDao;
    @Transactional(propagation=Propagation.NESTED)
    public void save(Customer c){ customerDao.save(c); } }

* Victor Mozharsky 35



Output
• JpaDialect does not support savepoints - check your 

JPA provider's capabilities

• The reason is that JPA doesn't support nested 
transactions

• Nested transactions are only supported on JDBC level 
directly

• See P363AddCustPayment project for the full text

* Victor Mozharsky 36



CustomerServiceImpl Class
package com.bionic.edu;
import javax.inject.Inject;
import javax.inject.Named;
import org.springframework.transaction.annotation.Transactional;
@Named
public class CustomerServiceImpl implements CustomerService{
    @Inject
    private CustomerDao customerDao;
    @Transactional(propagation=Propagation.REQUIRES_NEW)
    public void save(Customer c){ customerDao.save(c); } }

* Victor Mozharsky 37



Output
• Customer and Payment entities are successfully 

saved 

• The problem is in the risk of data integrity violation – 
rollback of PaymentServiceImpl.add transaction does 
not cause rollback of CustomerServiceImp.save 
transaction

• See P364AddCustPayment project for the full text

* Victor Mozharsky 38



Payment Entity
@Entity
public class Payment {
    @Id
    @GeneratedValue(strategy=GenerationType.IDENTITY)
    private int id;
    private java.sql.Date dt;
    .  .  .  .  .  .  .  .  .  .  .  .  .  .
    @ManyToOne
    @JoinColumn(name="customerId")
     private Customer customer;
    .  .  .  .  .  .  .  .  .  .  .  .  .  .

* Victor Mozharsky 39



Customer Entity
@Entity
public class Customer {
    @Id
    @GeneratedValue(strategy=GenerationType.IDENTITY)
    private int id;
    .  .  .  .  .  .  .  .  .  .  .  .  .  .
    @OneToMany(mappedBy="customer", 
cascade=CascadeType.PERSIST)
    private Collection<Payment> payments;

   .  .  .  .  .  .  .  .  .  .  .  .  .  .

* Victor Mozharsky 40



Main Class
Customer c = new Customer();
.  .  .  .  .  .  .  .  .  .  .  .  .  .
Payment p = new Payment();
.  .  .  .  .  .  .  .  .  .  .  .  .  .
ArrayList<Payment> list = new ArrayList<Payment>();
list.add(p);
c.setPayments(list);
p.setCustomer(c);

customerService.save(c);

* Victor Mozharsky 41



Output

• Customer and Payment entities are successfully 
saved 

• The problem of integrity violation is solved

• See P365AddCustPayment project for the full text

* Victor Mozharsky 42


