Лекции №19 - 20:

Тема: «IV и III группы периодической системы элементов Д.И. Менделеева»

- 1. Общая характеристика IV группы ПСХЭ.
- 2. Натрия гидрокарбонат.
- 3. Общая характеристика III группы ПСХЭ.
- 4. Кислота борная.
- 5. Натрия тетраборат.

Натрия гидрокарбонат Natrii hydrocarbonas

NaHCO₃

Получение: (открыт в 1801 году)

Способ Сольве:

$$NH_3 + CO_2 + H_2O = NH_4HCO_3$$

 $NH_4HCO_3 + NaCl = NaHCO_3 + NH_4Cl$
 $MHOFOKPATHO OYUЩАЮТ ПРОКАЛИВАНИЕМ:$
 $2NaHCO_3 = Na_3CO_4 + CO_5 + H_3O_5$

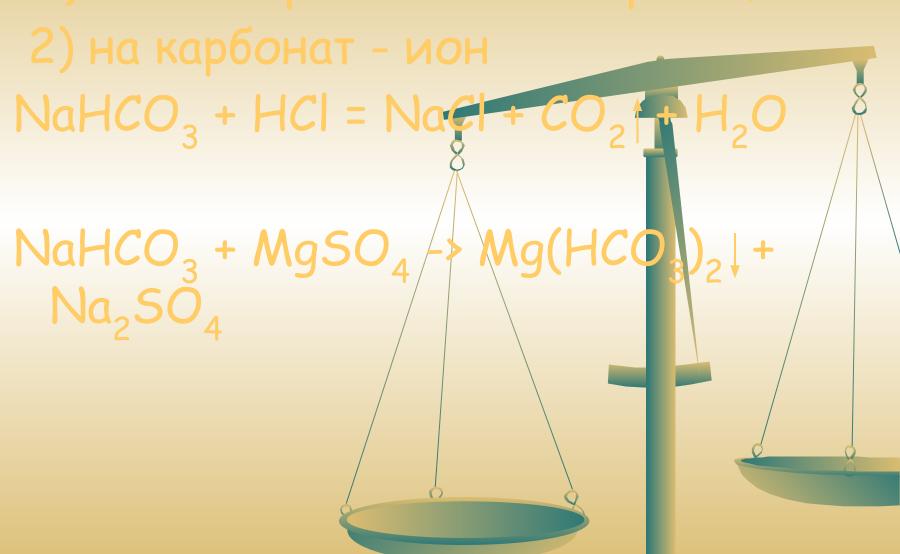
$$2NaHCO_3 = Na_2CO_3 + CO_2 + H_2O$$

 $Na_2CO_3 + CO_2 + 10H_2O = 2NaHCO_3 + 9H_2O$

Описание:

Белый кристаллический порошок без запаха, соленощелочного вкуса, устойчив в сухом воздухе, медленно разлагается во влажном. Водные растворы имеют щелочную реакцию

Растворимость:


Хорошо растворяется в воде, нерастворим в 95% спирте.

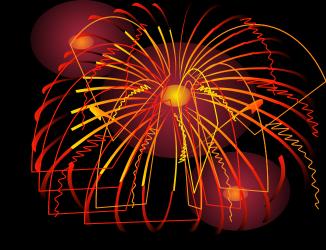
Водный 0,1н раствор препарата не должен окрашиваться от добавления ф-ф. Т.к. соль в растворе легко теряет углекислоту необходимо:

- пользоваться свежепрокипяченной и охлажденной очищенной водой
- растворять соль без встряхивания

Подлинность:

1) Na⁺ - пирохимическая реакция

Чистота:


- прозрачность и цветность раствора
- не допускается NH₄⁺, тяжелые металлы
- допустимое предельное содержание Cl^- , SO_4^{2-} , Fe, Ca^{2+} , As
- потеря в весе при прокаливании не меньше 36,6%

Количественное определение:

Метод нейтрализации, ацидиметрия Рабочий раствор- 0,1н HCl Ind - м/о

$$NaHCO_3 + HCI = NaCI + CO_2 + H_2O$$

$$C\% = T*K*V*100\% = He MeHee 99\%$$

Хранение: в хорошо укупоренной таре

Кислота борная Acidum boricum)

 H_3BO_3

M.m. 61,83

Получение:

В промышленности борную кислоту получают из борсодержащих минералов (ашарита $Mg_2OB_2O_5*H_2O$) действием концентрированной серной кислоты

Описание:

Жирные на ощупь, бесцветные, прозрачные чешуйчатые кристаллы или мелкий белый кристаллический порошок без запаха.

Растворимость:

В холодной воде растворяется плохо, в горячей - хорошо. Растворима в спирте 1/25, хуже в глицерине 1/7. При нагревании теряет часть воды и переходит в метаборную кислоту

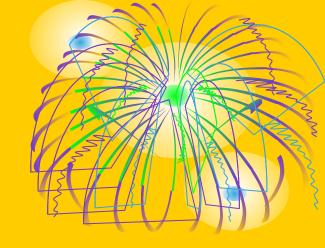
Подлинность:

1) с этанолом в присутствии конц. H_2SO_4 , при этом образуется борно-этиловый эфир, который дает пламя с зеленой каймой:

2) с куркумовой бумажкой, одновременно добавляя несколько капель НСІ появляется розовый или буровато-красный цвет. Если далее обработать раствором аммиака - зеленовато-черное окрашивание

Чистота:

- прозрачность и цветность;
- допускается присутствие примесей: кальция, железа, тяжелых металлов, мышьяка, сульфатов в количестве, не превышающем эталоны. Чистая борная кислота должна полностью растворяться в горячей воде и спирте.


Количественное определение:

Метод нейтрализации в присутствии глицерина, рабочий раствор 0,1н NaOH, Ind - ф/ф Т= 0,006183 С% не менее 99,5%

Применение:

- как антисептическое средство в виде 2-3% растворов для полоскания горла, в мазях и присыпках;
- 1-2% водные растворы применяются в глазной практике

Фармацевтическая химия ЛС

Хранение: В хорошо укупоренной таре

Натрия тетроборат. Бура Natrii tetraboras Borax Na₂B₄O₇*10H₂O M.m. 381,37

Получение:

В природе встречается в свободном состоянии. В промышленности получают из борной кислоты действием водного раствора карбоната натрия

Описание:

бесцветные прозрачные легковыветы кристаллы или кристаллический порошок

Растворимость:

Хорошо растворяется в воде, лучше в горячей. Легко в глицерине, не растворяется в спирте

Подлинность:

a) Na⁺:

пирохимическая реакция окрашивание пламени в желтый цвет

б) бура дает все реакции, характерные для борной кислоты

Чистота: – не должно быть примесей карбонатов;

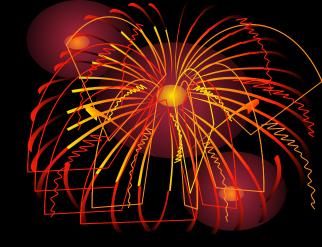
- допускаются примеси мышьяка, хлоридов, сульфатов, железа

Количественное определение:

Метод нейтрализации (ацидиметрия)

Рабочий раствор - 0,1N HCL

Ind - m/o


Na₂B₄O₇*10H₂O + 2HCl= 4H₃BO₃ + 2Nacl + 5H₂O

C% 99,5- 103%

Применение:

как антисептик в виде 1-2% растворов

Фармацевтическая химия ЛС

Хранение: в хорошо укупоренной таре в прохладном месте