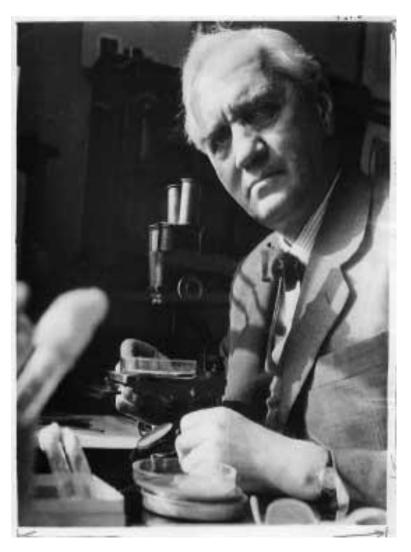
УЧЕНИЕ ОБ АНТИБИОТИКИКАХ И ХИМИОТЕРАПЕВТИЧЕСКИХ ПРЕПАРАТАХ.


Антибиотики -

(antibiotica; *анти-*+ греч. bios жизнь)

План лекции:

- 1. Краткий исторический очерк открытия антибиотиков и химиопрепаратов.
- 2. Основные понятия об антагонизме, синергизме, комменсализме.
- 3. Определение понятия "антибиотики". Классификация антибиотиков. Механизмы действия.
- 4. Осложнения антибиотикотерапии. Дисбактериозы. Принципы рациональной антибиотикотерапии.
- 5. Сульфаниламиды. Дезинфектанты.

ОСНОВОПОЛОЖНИКИ УЧЕНИЯ

ФЛЕМИНГ (Fleming) Александер (1881-1955 года), английский микробиолог.

1929 г. - установил, что один из видов плесневого гриба выделяет антибактериальное вещество - пенициллин.

Труды по иммунологии, общей бактериологии, химиотерапии, открытие лизоцима (1922 г.). Нобелевская премия (1945, совместно с Х. У. Флори и Э. Б. Чейном).

ЭРЛИХ (Ehrlich) Пауль (1854-1915), немецкий врач, бактериолог и биохимик.

- •Доказал возможность целенаправленного синтеза химиотерапевтических средств, создал препарат сальварсан для лечения сифилиса.
- •Нобелевская премия 1908, совместно с И. И. Мечниковым

ПРИНЦИПЫ ХИМИОТЕРАПИИ ЭРЛИХА

- Рецепторное взаимодействие препарата и макроорганизма.
- Изменение химической структуры препарата приводит к изменению его активности.
- В организме препарат изменяется, что может привести либо к усилению, либо к снижению его действия.
- Лекарственная устойчивость микроорганизмов.
- Химиотерапевтический индекс должен быть 3 и более.

ХИМИОТЕРАПЕВ-

Максимальная

переносимая доза

ТИЧЕСКИЙ ИНДЕКС = ----- бол. 3

Минимальная

терапевтическая доза

- Максимальная переносимая доза наибольшее количество препарата, которое не вызывает побочного действия.
- Минимальная терапевтическая доза количество препарата, обладающее губительным действием на микроорганизмы.

Зельман А. Ваксман (род. в Винницком уезде) — Нобелевская премия 1952 г., за «открытие стрептомицина, первого антибиотика, эффективного при лечении туберкулёза.

Ермольева Зинаида Виссарионовна

1898-1979; академик АМН СССР.

Получила первые отечественные **антибиотики**—пенициллин и стрептомицин.

• Симбиоз (от греч. συμ- — «совместно» и βίος — «жизнь») — это тесное и продолжительное сосуществование представителей разных биологических видов.

Мутуализм (англ. *mutual* — взаимный)

 форма взаимополезного сожительства, когда присутствие партнёра становится обязательным условием существования каждого из них.

Антагонизм:

- антагонизм микробов (антибиоз), впервые описан Л.Пастером (1877 г.):
- * подавление чумной палочкой синегнойной палочки;
- угнетение роста дрожжей актиномицетами, продуцирующими нистатин.

Виды антагонизма

- борьба за существование в парах:
- * хищник-жертва (хищничество);
- * хозяин-паразит (паразитизм).
- конкурентные взаимоотношения за источники энергии:
 - за источники питания;
 - за территорию;
 - за продолжение рода и др.

Паразитизм:

- — форма симбиоза, при которой один организм (паразит) использует другой (хозяин) в качестве источника питания или/и среды обитания, возлагая при этом (частично или полностью) на хозяина регуляцию своих отношений с внешней средой.
- П. бывает <u>облигатным</u>, когда паразит не может существовать без хозяина (типичный пример вирусы) и <u>факультативным</u> (вши, блохи, паразитические черви и т. д.).

Комменсализм (от лат. *con mensa* — буквально «у стола», «за одним столом»)

• — способ совместного существования двух разных видов живых организмов, при которых одна популяция извлекает пользу от взаимоотношения, а другая не получает ни пользы, ни вреда.

АНТИБИОТИКИ

Антибио́тики (от др-греч. ἀντί — против + β ίος — жизнь)

• - это биологически активные химиотерапевтические препараты природного (1), синтетического (2) или полусинтетического (3) происхождения, способные избирательно подавлять рост и размножение микроорганизмов и некоторых опухолей.

Классификация антибиотиков по источникам получения:

- 1. Природные бактерии, грибки, актиномицеты, клетки низших или высших растений и млекопитающих.
- 2. Синтетические созданы путем химических реакций хлорамфеникол, саназин, тетрациклин.
- 3. Полусинтетические получены в 2 этапа (природный+синтетический или синтетический+природный) метициллин, оксациллин.

ОСНОВНЫЕ ЦЕЛИ ПРИ СКРИНИНГЕ (ОТБОРЕ) АНТИБИОТИКОВ

• 1. Повышение антибиотических свойств.

• 2. Снижение токсико-аллергического действия антибиотика на организм человека.

Классификация антибиотиков по направленности действия:

- Противобактериальные;
- противогрибковые;
- антипротозойные;
- противовирусные;
- Не изучаются в курсе микробиологии:
- противоопухолевые;
- антигельминтные.

Классификация антибиотиков по химической структуре:

- Бета-лактамы (пенициллины, цефалоспорины и др.);
- Гликопептиды;
- Аминогликозиды;
- Тетрациклины;
- Макролиды;
- Линкозамиды;
- Левомицетины;
- Рифампицины;

полипептиды;

полиены;

разные группы:

фузидиевая к-та,

фузафунжин и др.

МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ДЕЙСТВИЯ АНТИБИОТИКОВ.

НАРУШАЮТ -

СИНТЕЗ КЛЕТОЧНОЙ СТЕНКИ ФУНКЦИЮ ЦИТОПЛАЗМА-ТИЧЕСКОЙ МЕМБРАНЫ

СИНТЕЗ БЕЛКА СИНТЕЗ НУКЛЕИНОВЫХ КИСЛОТ

Ингибиторы

синтеза клеточной

стенки

Пенипиллины Монобактамы Цефалоспорины Карбапенемы Гликопептилы Бацитрацин Циклосерин

Ингибиторы функций

питоплазматической

мембраны

Полимиксины

Антиметаболиты

(метаболизм фолиевой кислоты)

Сульфонамиды Триметоприм

Ингибиторы синтеза белка

ингибиторы 30S-субъединиц рибосом

Тетрациклины Аминогликозиды

ингибиторы 50S-субъединиц рибосом

Макролиды Хлорамфеникол Линкомицин

Ингибиторы

синтеза

нуклеиновых кислот

Рифампицин

(инибитор ДНК-зависимой РНК-полимеразы; нарушение транскрипции)

Хинолоны

(ингибитор ДНК-гиразы; нарушение репликации ДНК)

аминогликозидмодифицирующие

ферменты)

Антибиотическое действие на микробную популяцию:

- 1. **Бактерицидное** полное уничтожение популяции микроорганизмов (на молекулярном уровне нарушение целостности клеточной стенки, синтеза белка и ЦПМ).
- 2. Бактериостатическое препятствует увеличению числа клеток микроорганизмов (нарушение синтеза клеточной стенки).

ПОБОЧНОЕ ДЕЙСТВИЕ АНТИБИОТИКОВ

- Прямое токсическое действие.
- Аллергогенность (как результат повторного введения).
- Эндотоксический шок (вследствие выделения эндотоксина погибшими микроорганизмами).
- Дисбактериоз (качественное и количественное изменение микрофлоры тела человека).
- Иммунодепрессивное действие.
- Формирование лекарственной устойчивости и зависимости.

Дисбактерио́з (от др. геческого δυσ- — приставка, отрицающая положительный смысл слова или усиливающая отрицательный, и «бактерии»)

- качественное и количественное изменение нормального видового состава бактерий (микробиоты) кишечника, кожи, ротовой полости и (или) влагалища у женщин.

Принципы рациональной антибиотикотерапии:

- 1. Выделение возбудителя и его идентификация.
- 2. Прогнозирование перечня возможных для применения антибиотиков.
- 3. Определение чувствительности выделенного от больного возбудителя к имеющимся в наличии антибиотикам.
- 4. Оценка возможного токсико-аллергенного действия антибиотиков (опрос пациента и постановка кожной пробы) и знание фармакокинетики.
- 5. Комбинированная терапия (антибиотики, сульфаниламиды, иммунные сыворотки, иимуномодуляторы, пробиотики и др.).

МЕХАНИЗМЫ ФОРМИРОВАНИЯ ЛЕКАРСТВЕННОЙ УСТОЙЧИВОСТИ

- Продукция ферментов.
- Изменение проницаемости клеточной оболочки.
- Исчезновение мишени.
- Изменение обменных процессов.

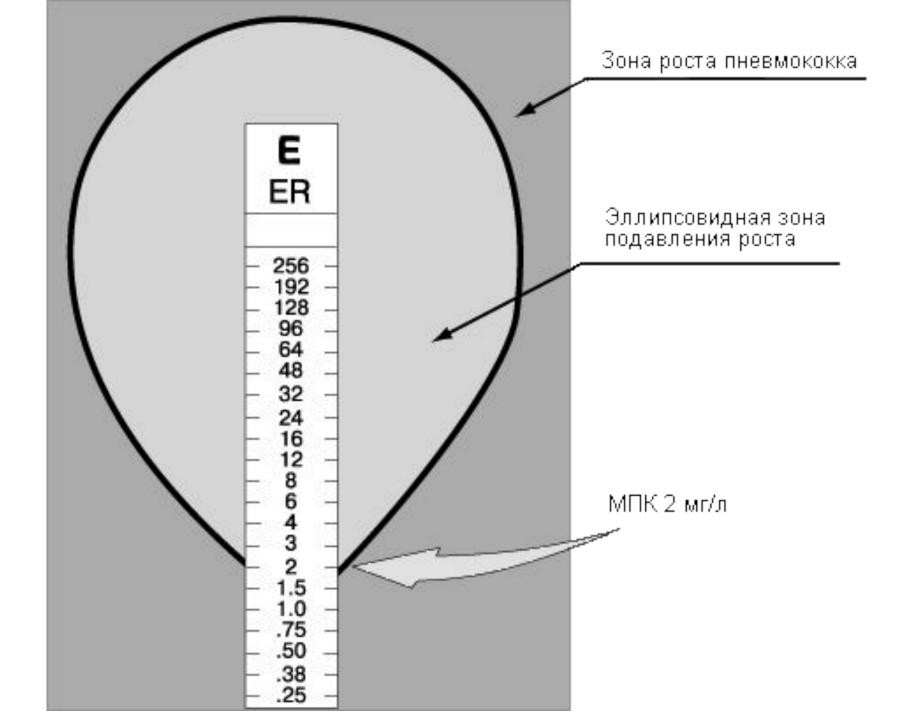
Механизмы резистентности

- Отсутствие структуры, на которую действует антибиотик (например, микоплазмы не чувствительны к пенициллинам, так как не имеют клеточной стенки);
- Микроорганизм не пропускает антибиотик во внутрь клетки (большинство грам-отрицательных бактерий невосприимчивы к пенициллину G, поскольку клеточная стенка защищена дополнительной мембраной).

- Микроорганизм в состоянии переводить антибиотик в неактивную форму (стафилококки содержат фермент беталактамазу, которая разрушает β-лактамовое кольцо большинства пенициллинов);
- Вследствие генных мутаций обмен веществ у микроорганизма может быть изменен таким образом, что блокируемые антибиотиком реакции больше не являются критичными для жизнедеятельности организма;
- Микроорганизм в состоянии выкачивать антибиотик из клетки.

МЕТОДЫ ОПРЕДЕЛЕНИЯ ЧУВСТВИТЕЛЬНОСТИ МИКРООРГАНИЗМОВ К АНТИБИОТИКАМ

• 1. <u>Разведения</u> — двукратных серийных разведений в жидкой или плотной питательной среде.


• 2. <u>Диффузионные</u> — дисковый метод, метод «колодцев» или «цилиндров».

Диско-диффузионный метод

Сульфаниламиды (дат. sulfanilamide)

- — это группа химических веществ, производных *пара*-аминобензол-сульфамида амида сульфаниловой кислоты (пара-аминобензосульфокислоты).
- Простейшее соединение класса также называется белым стрптоцидом и применяется в медицине до сих пор.

Сульфаниламиды -

- Производные парааминопроизводные сульфаниловой кислоты.
- Механизм действия антиметаболиты.
- Будучи похожими по химическому строению на парааминобензойную кислоту (ПАБ), проникают в клетку бактерий и блокируют синтез фолиевой кислоты.

Сульфаниламидные препараты, применяющиеся в клинической практике:

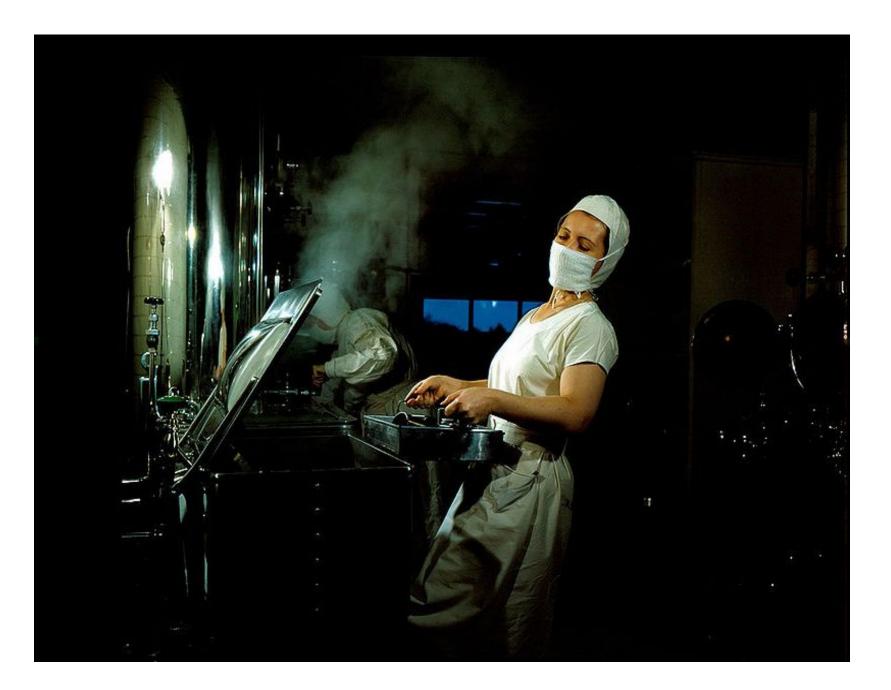
•- стрептоцид, сульфадиметоксин, сульфадимезин, сульфаметоксазол, этазол и сульфален.

Другие химиотерапевтические препараты-производные:

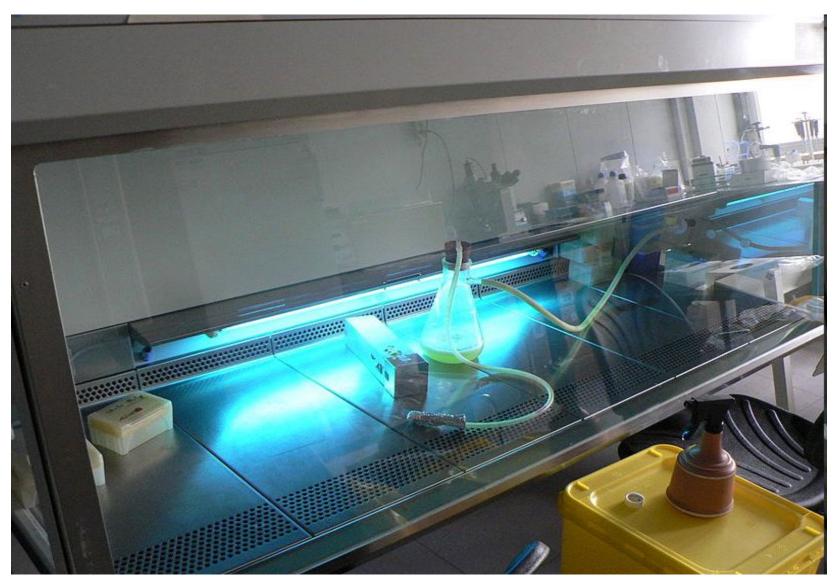
- - <u>нитрофуранов</u> (угнетают действие окислительно-восстановительных ферментов): фурациллин, фуразолидон и др.
- - имидазола: микозолон, клотримазол и др.
- - <u>хинолинов</u> (повреждает ДНК-гиразу): хлорохин и др.
- <u>Изоникотиновой кислоты</u> (противотуберкулёзные препараты): фтивазид, изониазид и др.

Дезинфекция

• — это комплекс мероприятий, направленных на уничтожение возбудителей инфекционных заболеваний и разрушение токсинов на объектах внешней среды.


Методы дезинфекции

- <u>Механический</u> предусматривает удаление заражённого слоя грунта или устройство настилов.
- <u>Физический</u> обработка лампами, излучающими ультрафиолет, или источниками гамма-излучения, кипячение белья, посуды, уборочного материала, предметов ухода за больными и др. В основном применяется при кишечных инфекциях.
- **Кипячение** используется для обработки белья (кипятят в мыльно-содовом растворе в течение 2 часов), посуды (в 2 % содовом растворе в течение 15 минут), питьевой воды, игрушек, пищи. Паровоздушная смесь является действующим началом в пароформалиновой дезинфекционной камере; в дезинфекционных камерах обеззараживают вещи больного и постельные принадлежности.


- Ультрафиолетовое облучение используется для обеззараживания воздуха помещений в лечебных и других учреждениях (лампа БУВ-15 или БУВ-30).
- **Химический** (основной способ) заключается в уничтожении болезнетворных микроорганизмов и разрушении токсинов дезинфицирующими веществами.
- <u>Комбинированный</u> основан на сочетании нескольких из перечисленных методов(например, влажная уборка с последующим ультрафиолетовым облучением)
- **Биологический** основан на антагонистическом действии между различными микроорганизмами, действии средств биологической природы. Применяется на биологических станциях, при очистке сточных вод.

Стерилизация

• — полное освобождение какого-либо предмета от всех видов микроорганизмов, включая бактерии и их споры, грибы, вирионы, а также от прионного белка, находящихся на поверхностях, оборудовании, в пищевых продуктах и лекарствах. Осуществляется термическим, химическим, радиационным, фильтрационным методами.

Ламинар-бокс

