Свинец и цинк в природе встречаются совместно, образуя комплексные полиметаллические месторождения. Мировые запасы свинца на начало XXI в. составили около 90 млн т, цинка — около 220 млн т. Наиболее крупными запасами свинца и цинка обладают США, Австралия, Казахстан, Канада, Китай. Россия занимает четвертое место в мире по запасам свинца и пятое по запасам цинка. Суммарные запасы свинца и цинка в уникальных месторождениях превышают 10 млн т, в крупных — колеблются от 10 до 5 млн т, в средних — от 5 до 2,5 млн т, в мелких — менее 2,5 млн т. По масштабам использования в промышленности свинец и цинк, каждый в отдельности, уступают меди, а в сумме превосходят ее. Ежегодное производство в концентратах составляет (в млн т): свинца — 2,8 — 3,0; цинка — 6,2 — 7,3; рафинированного свинца — 4,9 — 5,4 (при этом 40 — 45 % его получают из вторичного сырья); металлического цинка — 6,3 — 6,9.

В России месторождения свинца и цинка сосредоточены на Урале, Сев. Кавказе, Рудном Алтае, Енисейском кряже, в Забайкалье, Приморье.

В рудах свинцово-цинковых месторождений встречается до 30 рудных минералов, однако основное промышленное значение имеют лишь галенит и сфалерит. Среднее значение стандартного отношения Zn: Pb для всех генетических типов месторождений по запасам и добыче составляет (1,4-1,85):1. Попутными компонентами свинцово-цинковых руд являются Cd, Ag, Au, Se, Te, Ge, Te, Ge, In. B свинцово-цинковых рудах сосредоточено более 80 % мировых запасов кадмия, 40-50 % таллия, 25-30 % селена, теллура, индия, 15-20 % галлия и висмута. Свинцово-цинковые руды дают 50 % мировой продукции серебра. Свинцово-цинковые руды относятся к богатым при содержании свинца свыше 4 % или суммы свинца и цинка свыше 7 %; руды среднего качества содержат свинца 2-4 % или 4-7 % суммы свинца и цинка; бедные руды характеризуются содержанием свинца 1,2-2% или суммы свинца и цинка не ниже 4 %.

Основу мировой минерально-сырьевой базы свинца и цинка составляют следующие главные геолого-промышленные типы месторождений: колчеданно-полиметаллический в терригенных и карбонатно-терригенных формациях, колчеданно-полиметаллический в вулканогенных формациях и свинцово-цинковый стратиформный в карбонатных формациях. В минерально-сырьевой базе России существенное значение имеют геолого-промышленные типы свинцово-цинковых месторождений в известняках (часто со скарнами) и гидротермальных жильных месторождений. Следует также отметить, что более 30 % учтенных запасов цинка в России заключены в медно-цинковоколчеданных месторождениях. Краткая характеристика наиболее важных типов свинцово-цинковых месторождений приведена в табл. 1.

Кларк свинца в земной коре $1,6\cdot 10^{-3}$ %. Содержание его увеличивается от ультраосновных ($1\cdot 10^{-5}$ %) к кислым магматическим породам ($2\cdot 10^{-3}$ %). Известно четыре стабильных изотопа свинца с массовыми числами 204 и 206–208, среди них преобладает 208 Pb.

Природные соединения свинца, как правило, двухвалентны, исключение составляют лишь PbO_2 и Pb_3O_4 . Ионы свинца электроположительные. Типичны катионы, вызывающие ясно выраженную поляризацию.

Кларк цинка несколько выше, чем свинца и составляет $8,3\cdot 10^{-3}$ %. Наблюдается увеличение содержания его от ультраосновных к основным магматическим породам. Цинк типичный четный элемент из группы побочных, т. е. дающий ионы типа купро с сильной активной поляризацией. Цинк имеет пять стабильных изотопов с массовыми числами 64, 66-68 и 70, среди которых преобладает 64Zn.

Свинец и цинк концентрируются в остаточных очагах кислых производных базальтовой и гранитной магм. Оба металла выносятся гидротермальными растворами в комплексных соединениях в виде солей хлористоводородной, угольной, серной, хромовой, молибденовой, фосфорной и других кислот. Многочисленны также соли сульфокислот с мышьяком и сурьмой.

В экзогенных условиях сульфиды свинца и цинка, окисляясь переходят в сульфаты. Сульфат цинка относится к легкорастворимым соединениям и обладает высокой миграционной способностью, сульфат свинца, наоборот, плохо растворим, и свинец обычно не выносится из зоны окисления.

Галенит PbS (содержание Pb 86,6 %), часто наблюдаются примеси Ag, Cu, Zn.

Буланжерит $Pb_5Sb_4S_{11}$ (содержание Pb 55,4 %), содержит обычно примеси Cu и Fe.

Бурнонит CuPbSbS₃ (Pb 42,5 %)

Церуссит PbCO₃ (Pb 77,6 %), примеси Ag, Sr, Zn.

Aнглезит PbSO₄ (содержание Pb 68,3 %)

Cфалериm ZnS (Zn 67 %), примеси Fe, Cd, Ir, Ga, Mn, Hg и др.

Вюртцит ZnS (Zn 63 %)

 $\it Cmumcohum \, ZnCO_3 \, (Zn \, 52 \, \%)$ изоморфные примеси Fe, Mn, Mg, Co, Cu, Pb, Cd, In и др.

Каламин Zn[Si₂O₇](OH)₂ (Zn 53,7 %)

Запасы свинца (тыс. т) в некоторых странах [6]

		T 12	I.	V 8.23
		Запасы	11	Среднее
Часть света,	Запасы	подтвер-	Их % от	содержние
страна	общие	жденные	мира	Рb в рудах.
				%
Россия	14150	13950	10,2	1,3
ЕВРОПА	28983	16837	12,4	***
Ирландия	2600	1750	1,3	2,1
Испания	4320	2315	1,7	1,5
Польша	3945	2435	1,8	1,3
Португалия	2000	1500	1,1	
Швеция	1900	1490	1,1	2,3
Югославия	4480	2480	1,8	3,1
КИЕМ	79307	45335	33,3	
Азербайджан	1661	1525	1,1	1,5
Индия	6570	5674	4,2	1,6
Казахстан	20800	14860	10,9	1,3
Китай	17580	7200	5,3	6
Таджикистан	6550	4500	3,3	0,7
Узбекистан	4870	3200	2,3	1,8
Япония	1770	1770	1,3	1,0
АФРИКА	16850	9186	6,7	
Марокко	4360	1800	1,3	5,7
ЮАР	8220	5130	3,8	5,0
АМЕРИКА	55675	30963	22,7	
Бразилия	2900	1990	1,5	6,1
Канада	16500	9410	6,9	2,8
Мексика	4540	3510	2,6	1,8
Перу	3370	2500	1,8	1,1
США	25850	11850	8,7	3,5
ОКЕАНИЯ И АВСТРАЛИЯ	24400	20000	14,7	
Австралия	24400	20000	14,7	6,4

Запасы цинка (тыс. т) в некоторых странах [6]

Часть света, страна	Запасы общие	Запасы подтвер- жденные	Их % от мира	Среднее содер- жание Zn в ру- дах, %
ЕВРОПА	66636	41210	15	
Ирландия	13120	9220	3,4	10,2
Испания	8830	5510	2	
Польша	12195	7100	2,6	3,7
Португалия	6000	4500	1,6	4,4
Югославия	5600	3470	1,3	4,4
R И8А	182790	108284	39,4	
Азербайджан	3758	3648	1,3	3,7
Индия	25550	17510	6,4	5
Иран	9600	5800	2,1	14
Казахстан	41175	34220	12,5	3,2
Китай	48100	15000	5,5	8
Таджикистан	7745	4660	1,7	0,6
Турция	6635	5335	1,9	6,2
Узбекистан	5553	4725	1,7	2,4
RинопR	7505	6805	2,5	4,9
АФРИКА	35470	19094	7	
ЮАР	15000	11800	4,3	5,3
АМЕРИКА	139650	67087	24,4	
Канада	56000	23880	8,7	7,3
Мексика	7600	6600	2,4	4,1
Перу	10020	6100	2,2	4,4
США	50000	23500	8,6	3,0
ОКЕАНИЯ И АВСТРАЛИЯ	65000	39000	14,2	
Австралия	65000	39000	14,2	12,8

Основные месторождения свинца РФ (76% запасов)

месторождение	местонахождение	запасы (%)
ГОРЕВСКОЕ	КРАСНОЯРСКИЙ КРАЙ	42
ХОЛОДНИНСКОЕ	БУРЯТИЯ	14
ОЗЁРНОЕ	БУРЯТИЯ	11
НИКОЛАЕВСКОЕ	ПРИМОРЬЕ	4
КОРБАЛИХИНСКОЕ	АЛТАЙ	3
НОВО-ШИРОКИНСКОЕ	ЧИТИНСКАЯ ОБЛАСТЬ	2

Уникальные месторождения имеют суммарные запасы свинца и цинка более 5 млн т,

очень крупные от 5 до 2 млн т, крупные от 2 млн т до 600 тыс. т, средние от 600 до 200 тыс. т мелкие – менее 200 тыс. т.

Свинцово-цинковые руды относятся к богатым при содержании свинца свыше 4% или наличии свинца и цинка более 7%, руды среднего качества содержат 2-4% или 4-7%, бедные 1,2-2 % или не ниже 4%

Таблица 1.2.3 Главные геолого-промышленные типы свинцово-цинковых месторождений

Геолого- промыш- ленный тип	Рудоносные формации	Рудные тела	Мине- ральный состав руд	Среднее содержание элементов, %	компо-	Масштаб месторож- дений		
1	2	3	4	5	6	7	8	9
3. Свинцово- цинковый страти- формный в карбонатных формациях	(известняково- доломитовые) формации (в том	Согласные пластовые и лентовидные залежи в одном или нескольких стратиграфических горизонтах. Протяженность от сотен м до первых км, ширина — до 1 км, мощность 0,5-200 м	Главных: галенит, барит, сфалерит Второсте- пенных: пирит, марказит, халькопирит.	Pb=0,4-5,8 Zn=1,0-7,4 BaSO4= 3,3-6,4	Ba, Ag, Cd, Se, Te, In; Ge	Крупные, уникаль- ные	16/17	Павловское; Сардана (Россия), Миргалимсай (Казахстан); месторождения долины р. Миссури (США)

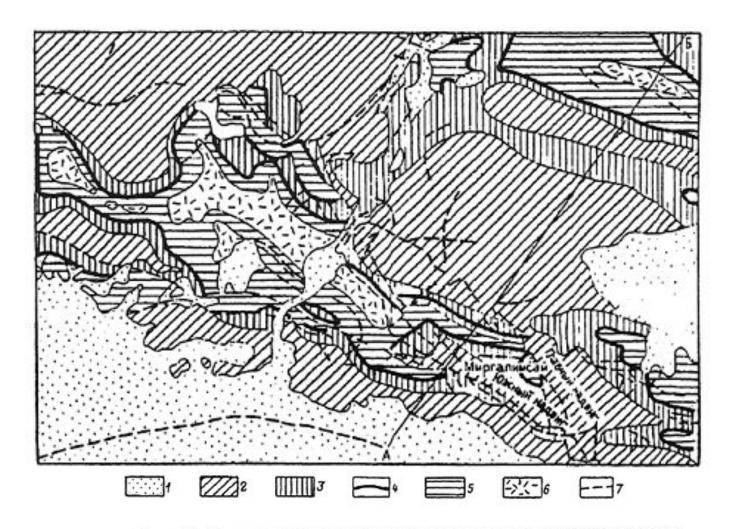
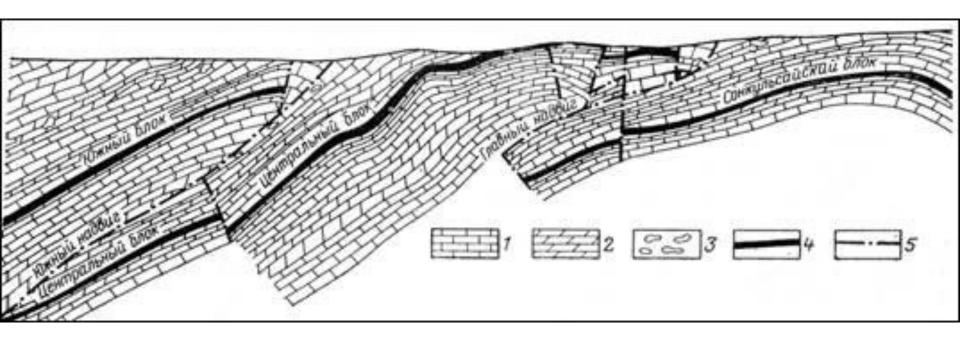



Рис. 76. Схематическая геологическая карта и разрез Миргалимсайского поля (по У.А.Асаналиеву и др.).

I — мезокайнозойские отложения; 2 — нижнекаменноугольные отложения (полосчатый, второй и первый перемежающиеся, искристый, базальный горизонты); 3 — фаменские отложения (верхний ленточный, верхний комковатый, плитчатый, средний комковатый горизонты); 4 — второй ленточный (рудный горизонт); 5 — горизонты фаменских отложений: 5 — ячеистый, нижний ленточный, нижний комковатый, доломитовый, переходный горизонты, 6 — аргиллитовый; 7 — разрывные нарушения

Схематический разрез Миргалимсайского свинцово-цинкового месторождения в Каратау, Казахстан: 1 - известняки; 2 - доломиты; 3 - брекчированные известняки; 4 - рудные тела; 5 - тектонические послерудные нарушения.

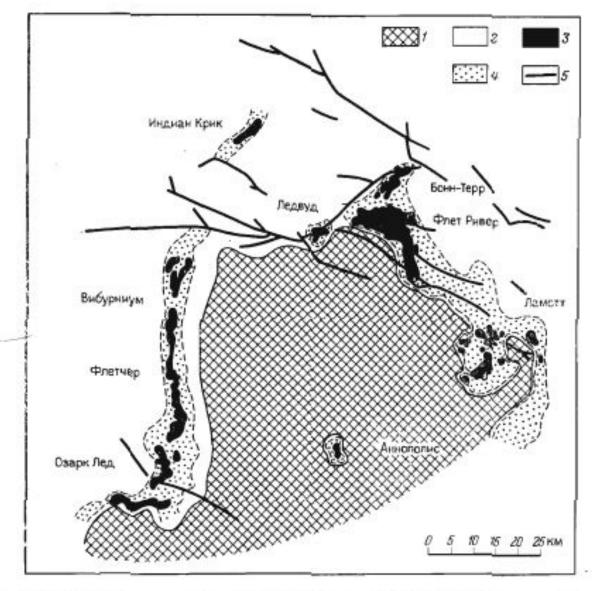
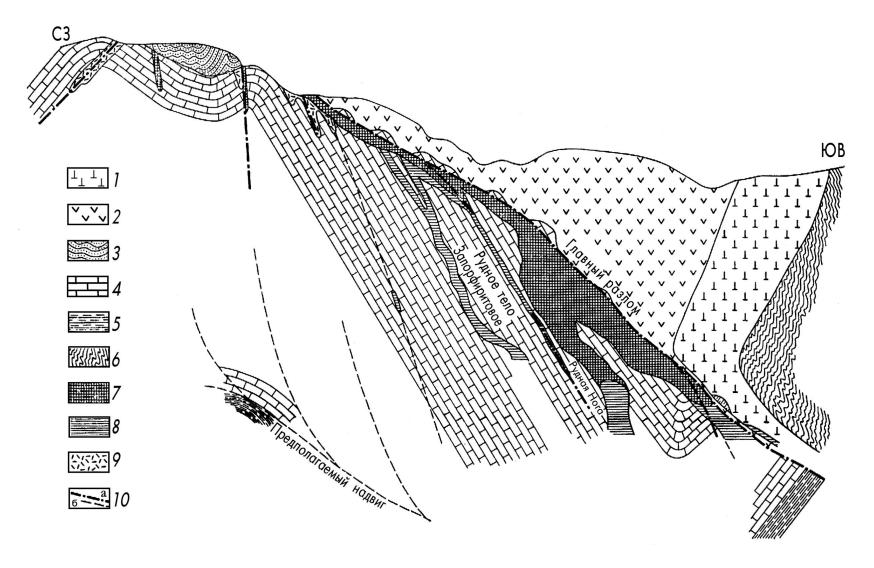



Рис. 126. Размещение свинцово-цинковых месторождений на юго-востоке штата Миссури, США (по периферии плато Озарк). По Г. Кисварзани.

 $I \to выходы докембрийских пород выступа Озарк; <math>2 - \text{осадочные}$ отложения кембрия и ордовика; участки минерализации: 3 - интенсивьой, 4 - слабой, $\delta - \text{главище}$ разломы

Таблица 1.2.3 Главные геолого-промышленные типы свинцово-цинковых месторождений

Геолого- промыш- ленный тип	Рудоносные формации	Рудные тела	Мине- ральный состав руд	Среднее содержание элементов, %	компо-	Масштаб месторож- дений	Отн. роль в мировых запасах, в % Pb/Zn	
1	2	3	4	5	6	7	8	9
цинковый в известняках, часто со скарнами	формации, часто в сочетании с гранитоидными комплексами вулкано- плутонических ассоциаций	линзовидной форм, трубо- и жило- образные тела. Протяжен- ность -200-800 м,	сфалерит Второсте- пенных:		Cu, Ag, Cd, Zn; Bi, Au	Средние и мелкие	12/6	Николаевское (Приморье, Россия), Кызыл-Эспе, Аскоран (Казахстан), Карамазар (Узбекистан)

Схематический геологический разрез месторождения Верхнего (по И. Томсону и Н. Мозговой):

1 – андезиты; 2 – кварцевые порфиры; 3 – кремнистые песчано-сланцевые породы; 4 – известняки; 5 – песчано-сланцевые породы; 6 – кремнистые сланцы; 7 – скарновое рудное тело; 8 – проекция рудного тела; 9 – окисленная руда; 10 – разломы (a – установленные, 6 – предлагаемые)

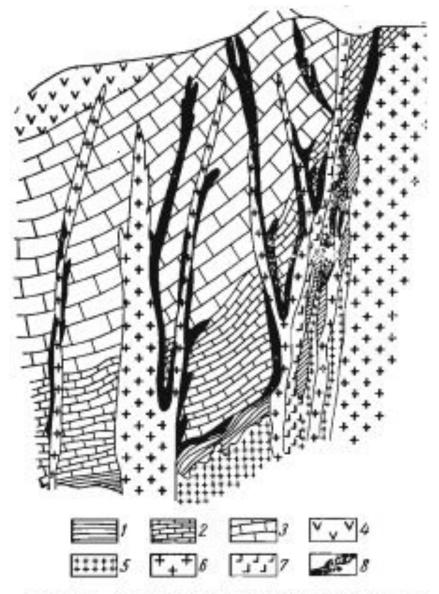


Рис. 89. Схематический поперечный разрез скарнового месторождения Алтын-Топкан. По А. Амирасланову.

1 — эффузивно-осадочные породы;
 2 — доломиты;
 3 — известияки;
 4 — туфы;
 5 — гранодиориты;
 6 — гранодиорит-порфиры;
 7 — гранит-порфиры;
 8 — скарново-рудные тела

Таблица 1.2.3 Главные геолого-промышленные типы свинцово-цинковых месторождений

Геолого- промыш- ленный тип	Рудоносные формации	Рудные тела	Мине- ральный состав руд	Среднее содержание элементов, %	компо-	Масштаб месторож- дений	Отн. роль в мировых запасах, в % Pb/Zn	Примеры месторож- дений
1 5. Свинцово- цинковый жильный	2 Гранитоидные формации и риолитовые комплексы вулканогенных формаций	3 Жилы, жильные и штокверковые зоны. Протяженность - до сотен м, мощность - от долей метра до 10 м		5 Zn=2-7	6 Ag, Cu; Ga, Te; Jn	7 Мелкие, средние	8 4/4	9 Садон, Згид (Россия), Гарц, Рудные горы (Германия)

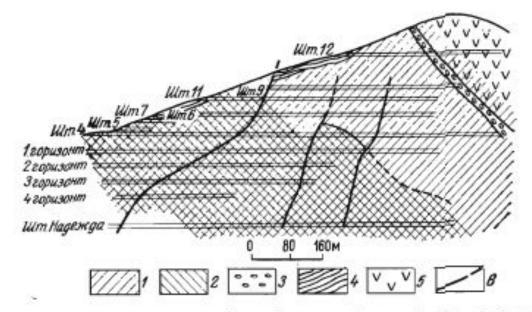


Рис. 153. Зональное строение жилы Згид (продольный разрез), По И. Златогурской Минерализгция: 1— полиметаллическая, 2— магистит-манганосидеритовая; 3— базальный конгломерат; 4— сланцы; 5— кератофиры; 6— поперечные сбросы

Рнс. 154. Схема механизма приоткрывания и заполнения рудной жилы Згид (поперечный разрез).

а — вторая стадия оруденения;
 б — третья стадия оруденения.
 Пунктириая линия — кривая содержания свинца;
 штрихпунктирная линия — кривая содержания цинка

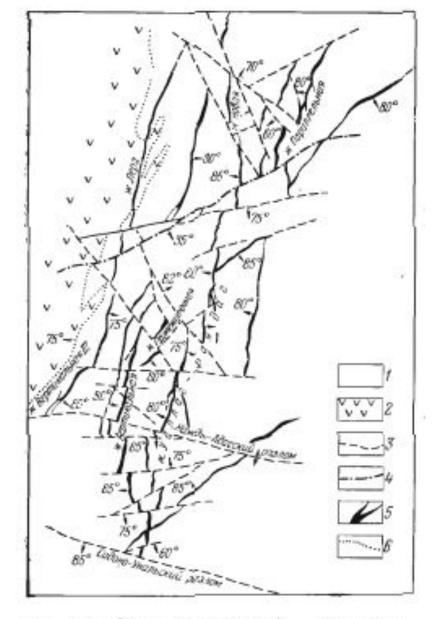
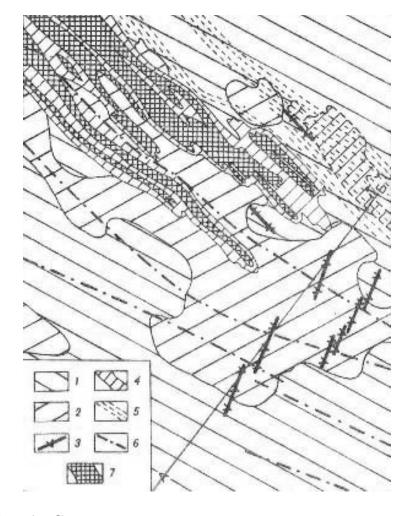
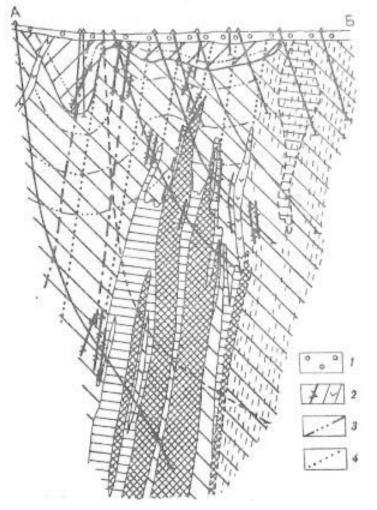
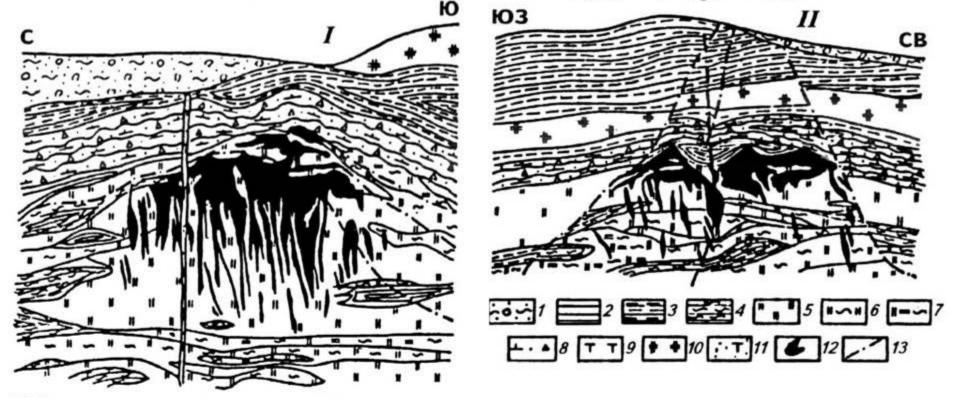


Рис. 173. Схема геологической структуры свинцово-цинкового месторождения Холет на Северном Кавказе, план. По Е. Некрасову. 1—граниты; 2— дайки и экструзивные тела кварцевых днорит-порфиритов и альбитофиров; трещины: 3— дорудные, 4— послерудные; 5— кварц-пирит-галенит-сфалеритовые жилы; 6— контакты

Таблица 1.2.3 Главные геолого-промышленные типы свинцово-цинковых месторождений

Геолого- промыш- ленный тип	Рудоносные формации	Рудные тела	Мине- ральный состав руд	Среднее содержание элементов, %	компо-	Масштаб месторож- дений	Отн. - роль в мировых запасах, в % Pb/Zn	
1	2	3	4	5	6	7	8	9
1. Колчеданно- полиметалли- ческий в терригенных и карбонатно- терригенных формациях	1.5	* * * * * * * * * * * * * * * * * * * *	Главных: сфалерит, галенит, барит, пирротин Второсте- пенных: сульфосоли Рb, пирит, магнетит, арсенопирит буланжерит и лр	Zn=0,1-6,5	Ag, Cu, Cd, As, Ba	Крупные, уникаль- ные	36/31	Филизчай (Азербайджан) Холоднинское, Горевское (Россия); Маунт-Айза (Австралия); Ред-Дог (США)


Рис.1. Схема геологического строения крайней юго-восточной части Горевского месторождения (по М.Л.Шерману и др., с добавлениями). 1, 2 — тектониты, сформированные по серым, темно-серым и черным известнякам токминской свиты (1), серым и зеленовато-серым сланцам сухохребтинской свиты (2); 3 — дайки основных пород (диабазы и др.); 4 — гидротермалиты - доломитизированные, анкеритизированные, сидеритизированные и окварцованные тектониты, кварциты и др.; 5 — интенсивно рассланцованные породы; 6 — зоны дробления пород; 7 — сульфидные свинцовые и свинцово-цинковые руды.

Разрез по линии А — Б, рис.1 (по М.Л. Шерману и др., с добавлениями). 1 — аллювиальные отложения; 2 — дайки основных пород; 3 — слоистость пород; 4 — псевдослоистость; остальные обозначения те же, что и на рис.1.

Таблица 1.2.3 Главные геолого-промышленные типы свинцово-цинковых месторождений

Геолого- промыш- ленный тип	Рудоносные формации	Рудные тела	Мине- ральный состав руд	Среднее содержание элементов, %	компо-	Масштаб месторож- дений	Отн. роль в мировых запасах, в % Pb/Zn	
1	2	3	4	5	6	7	8	9
2. Колчеданно- полиметалли- ческий в вулкано- генных формациях	диффе- ренцированные базальтоидные формации - базальт- риолитовая, базальтанде- зитдаци-	структурам. Протяженность тел - до 1-2 км, мощность - от метров	галенит, халькопирит, пирит Второсте-	Zn=6 Cu=0,3 Au=3 г/т Ag=8 г/т	Cd, Sb, As, Ag, Au, Ba	Крупные, уникаль- ные	15/22	Риддер- Сокольное, Тишинское (Рудный Алтай, Казахстан), Корбали- хинское (Рудный Алтай, Россия), Куроко (Япония), Кидд-Крик (Канада)

Разрезы рудных залежей Риддер-Сокольного месторождения:

1 - Юго-Западная, II - Победа (по данным Лениногорского рудника):1 - рыхлые отложения 2 - алевропелиты; 3 - известковистые алевропелиты; 4 - серицитизированные алевропелиты; 5 - микрокварциты; 6 - серицит-хлорит-кварцевые породы; 7 - серицитизированные микрокварциты; 8 - агломератовые туфы смешанного состава; 9 - миндалекаменные плагиоклазовые порфириты; 10 - кварцевые альбит-порфиры; 11 -диабазы и диабазовые порфириты; 12 - полиметаллическая руда; 13-разломы.

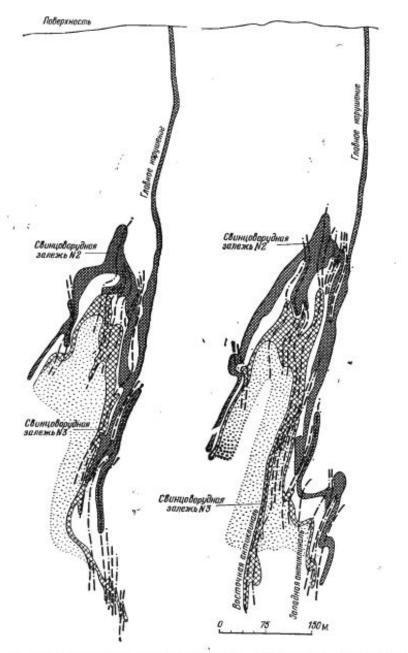


Рис. 329. Геологические разрезы свинцоворудных залежей 2 и 3 месторождения Брокен Хилл в Австралии. По \mathcal{L} устафсону и др.

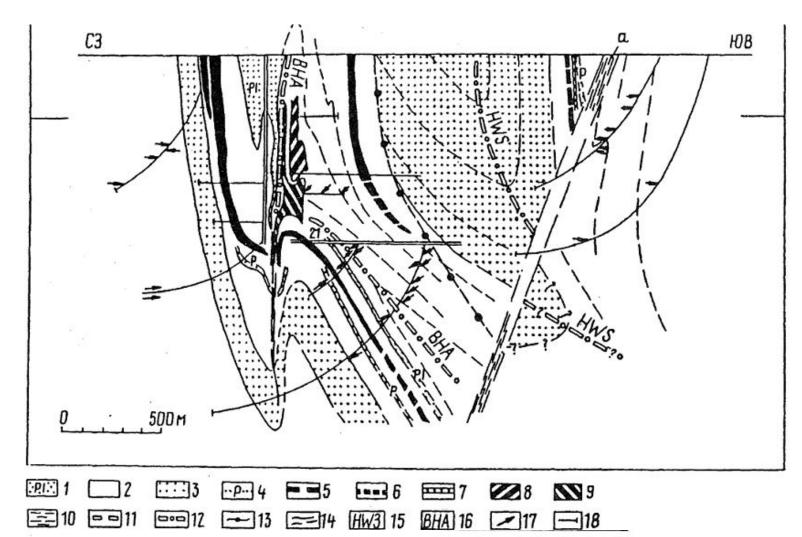


Рис. 82. Геологический разрез через южную часть рудного района Брокен-Хилл (Лейнг и др., 1978).

1 — пелитовые силиманитовые гнейсы; 2 — псаммитовые силиманитовые гнейсы; 3 — гранитогнейсы; 4 — гранитогнейсы Потоси; 5 — амфиболиты; 6 — слоистая железорудная формация; 7 — подошва рудоносного горизонта; 8 — цинковые руды; 9 — свинцовые руды; 10 — сдвиговые зоны или разломы траекториеосевых плоскостей складок; 11 — первой стадии; 12 — второй стадии; 13 — положение кристаллизационной сланцеватости; 14 — положение полосчатости; 15 — синформная складка Хангинг-Волл; 16 — антиформная складка Брокен-Хилл; 17 — градационная слоистость; 18 — буровые скважины; а → зона сдвига Глоуб-Воксхолл

Читает Царев ДИ Озерное

Холоднинское

19партсъезда (Урал)

Сибальское

Училинское

Агбастау

Витватер-Сранд