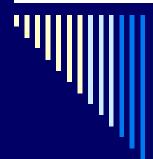


Тема: «Многоатомные спирты»


Цель урока:

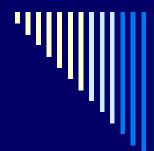
- □ Познакомиться со строением, физическими и химическими свойствами многоатомных спиртов,значением и применением их в промышленности и в повседневной жизни;
- развитие умений составлять структурные формулы спиртов, записывать уравнения реакций, уметь составлять генетическую связь с другими классами органических веществ;
- Формирование коммуникативных умений в ходе групповой работы, привитие навыков работы с ПЭВМ.


Содержание урока:

- 1 этап Организационномотивационный
- Повторение предыдущей темы:
- □ Устный опрос;
- □ Работа на местах.

Содержание 1 этапа:

- Устный опрос :
 - Какие вещества называются спиртами?
 - Каковы физические свойства спиртов?
 - Где используются спирты?
 - Характерные химические свойства спиртов?


Содержание 1 этапа:

- Работа на местах
- написать формулу
 - 2-метил бутанола
 - 2-метил-2-бутанола
 - Осуществить превращение:

$$\square \ \, \mathrm{C_2} \,\, \mathrm{H_6} \rightarrow \mathrm{C_2} \,\, \mathrm{H_4} \,\, \rightarrow \mathrm{C_2} \,\mathrm{H_5} \,\, \mathrm{O} \,\, \mathrm{H} \rightarrow \mathrm{C_2} \,\mathrm{H_5} \,\, \mathrm{CI}$$

Č

 $C_2 H_4$

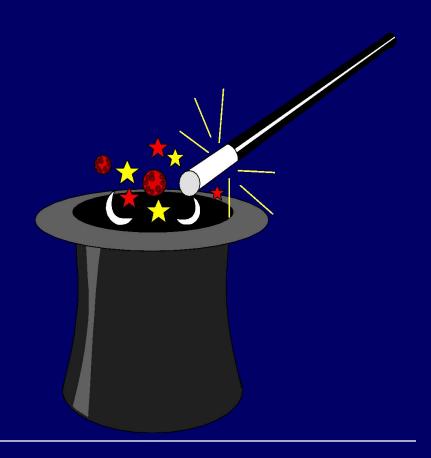
Содержание 1 этапа:

Дать название следующим веществам :
CH₂—CH—CH₂—CH₂—OH
CH₃
OH--- CH₂—C--- CH₃
OH--- CH₂—C--- CH₃

CH₃

Содержание 1 этапа

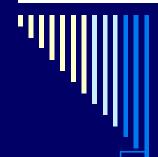
- □ ПЛАНИРОВАНИЕ УРОКА И МОТИВАЦИЯ:
- Что мы знаем о спиртах? Используем ли их в повседневной жизни?
- Как вы думаете, что представляет собой глицерин?
- □ Что вы знаете о незамерзающих жидкостях?
- □ Давайте сегодня поговорим о них
- □ План урока:
 - .Строение и физические свойства многоатомных спиртов
 - □ .Химические свойства многоатомных спиртов
 - □ .Применение спиртов.
 - □ Лабораторный опыт


2 этап операционноисполнительский

- открываем тему «Многоатомные спирты»
- □ (Приложение 2)

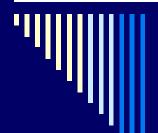
2. Химические свойства многоатомных спиртов

- Взаимодействие с металлами
- Взаимодействие с гидроксидом меди
- Взаимодействие с азотной кислотой

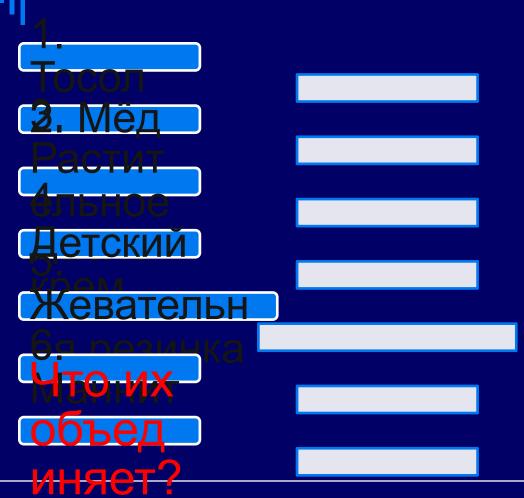


Генетическая связь многоатомных спиртов

М ногоатомные спирты


предельные углеводороды непредельные углеводороды

галогенпроизводные углеводородов



Применение спиртов

- Использование в косметике
- □ Использование в медицине
- Использование в текстильной промышленности
- Использование в радиаторах машин

Представленные вещества

''|||||||| Тосол

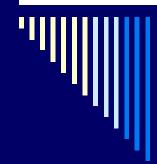
ЭТИЛЕНГЛИКОЛЬ - двухатомный спирт.

- Важным свойством этиленгликоля является способность понижать температуру замерзания воды, от чего вещество нашло широкое применения как компонент автомобильных антифризов и незамерзающих жидкостей.
- Он применяется и для получения лавсана (ценного синтетического волокна).

Тосол

Тосол

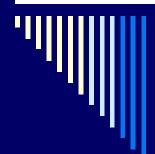
этиленгликоль


CH2 - CH2 OH OH

Мёд

Основной составной частью мёда всех видов являются углеводы. В процентном отношении глюкоза составляет около 35% и фруктоза около 40%.

- □ Глюкоза (С₆H₁₂O₆) («виноградный сахар» встречается в соке многих фруктов и ягод, в том числе и винограда. В организме человека и животных глюкоза является основным и наиболее универсальным источником энергии для обеспечения метаболических процессов
- Фруктоза , или плодовый сахар С₆Н₁₂О₆ моносахарид, который в свободном виде присутствует почти во всех сладких ягодах и плодах. В отличие от глюкозы, фруктоза не поглощается инсулин-зависимыми тканями. Она почти полностью поглощается и метаболизируется клетками печени.



Мёд

Углевод

Фруктоза, глюкоза

$$H_2C$$
 - CH -

Маннит

Маннит — шестиатомный <u>спирт</u>, содержится во многих растениях.

Сорбит — является составной частью маннита.

Сорбит часто применяется как заменитель сахара, его можно встретить в диетических продуктах и диетических напитках. Вещество считается пищевым подсластителем.

Маннит

Сорбит

Жевательная резинка

Жева́тельная рези́нка — вид конфеты, которая состоит из несъедобной эластичной основы и различных вкусовых и ароматических добавок.

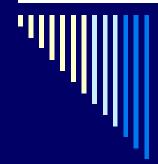
Ксилит - пятиатомный спирт.

По калорийности ксилит идентичен <u>сахару</u>, в два раза слаще его. Биологической ценности не имеет. Отрицательного действия на организм не оказывает. Его применяют в пищевой промышленности, например вместо сахара, в производстве кондитерских изделий для больных <u>диабетом</u> и <u>ожирением</u>

Жевательная резинка

Ксилит

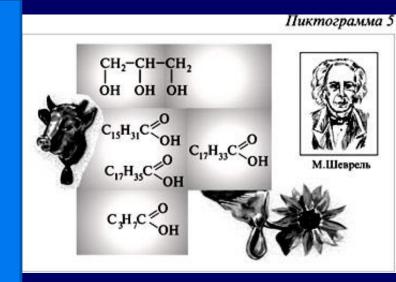
Детский крем (глицерин)

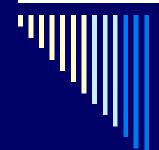

Глицерин – трёхатомный спирт. Это бесцветная, вязкая, гигроскопичная, сладкая на вкус жидкость. Смешивается с водой в любых отношениях, хороший растворитель.

- При обработке кожи.
- Как компонент некоторых клеёв.
- □ При производстве пластмасс глицерин используют в качестве пластификатора.
- В производстве кондитерских изделий и напитков (как пищевая добавкаЕ422).

Детский крем

Глицерин


CH₂ - CH - CH₂ OH OH OH



Растительное масло

Жиры – это сложные эфиры глицерина и высших карбоновых кислот.

Насыщенные кислоты образуют твердые жиры, обычно они животного происхождения. Непредельные кислоты образуют жидкие жиры, они обычно растительного происхождения. Жиры — основной источник энергии в живых организмах.


Растительное

Жир

Сложный эфир

Глицерин

Задания

□ Принести образцы для коллекции «Многоатомные спирты» (упаковки, инструкции).