

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ХИМИИ

Растворы. Теория электролитической диссоциации

Определение растворов.

- Раствор гомогенная система, состоящая из двух или более компонентов.
- Раствор состоит из растворенного вещества и растворителя.
- Растворитель компонент раствора, существующий в одном агрегатном состоянии с раствором или преобладающий в растворе.
- Растворы делят на **истинные** и **коллоидные**.
- Состав растворов может изменяться в широких пределах.

Концентрация растворов и способы ее выражения.

Концентрация раствора — количество растворенного вещества, содержащееся в определенном количестве раствора или растворителя.

Процентная концентрация (массовая доля, ω) — количество граммов растворенного вещества, содержащееся в 100 граммах раствора.

Мольная доля (N) — отношение числа молей данного вещества к общему числу молей в растворе.

m(pаствора) = m(pастворенноговещества) + m(pастворителя) $<math>m(pаствора) = V \bullet \rho$,

гдв V – объем раствора, P плотность раствора.

$$N_1 = n_1 / (n_1 + n_2),$$

$$N_2 = n_2 / (n_1 + n_2),$$

где n₁ — число молей растворенного вещества, n₂ — число молей растворителя.

$$N_1 + N_2 = 1$$

Способы выражения концентрации растворов.

```
C_{,i} = \frac{m(\textit{рас ть оренноговещества})}{M \cdot V} \cdot 1000 \text{ (M)}, где M - \textit{молярная масса растворенного вещества,} V - объем полученного раствора или C_{,i} = \frac{m(\textit{растворенноговещества})}{M \cdot V} \text{ (моль/л)}
```

```
C_H = \frac{m(pастворенноговещества)}{3 \cdot V} \cdot 1000 \text{ (H)}, где 3 - 3кече ален т растворен ного вещества, V - 66ъем или C_H = \frac{m(pастворенноговещества)}{3 \cdot V} \text{ (ЭКВ/П)}
```

- Молярная концентрация раствора (См) количество вещества растворенного в 1000 мл раствора (1 л) (выражается числом молей в одном литре раствора).
- Нормальная концентрация или эквивалентная (Сн, Сэ) выражается числом эквивалентов растворенного вещества в 1 л раствора.

Теория электролитической диссоциации

Сванте Аррениус (1859-1927)

В 1887 г. штерлемий учёный.
С. Аррениус прудлюжил теорию
электролинуческой диссопрации
для объясиения особенностей поведения
волиму раствором жендесть.

Все вещества по отношению к электрическому току можно разделить на

Электролиты их растворы или расплавы электрический

Неэлектролиты их растворы или расплавы электрический Вид химической связи

Электролиты

Соли

 Na_2SO_{4} , KCI, $Ca(NO_3)_2$

Кислоты

 $\begin{array}{c} \mathsf{HCI}, \ \mathsf{H_3PO_4} \\ \mathsf{H_2SO_4} \end{array}$

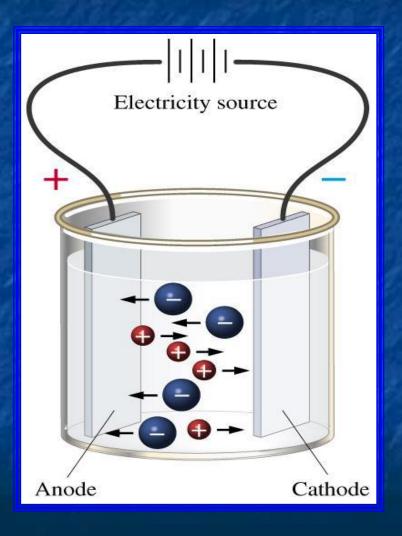
Щёлочи

KOH, NaOH Ba(OH)₂

Неэлектролиты

Газы

O_{2,} N₂

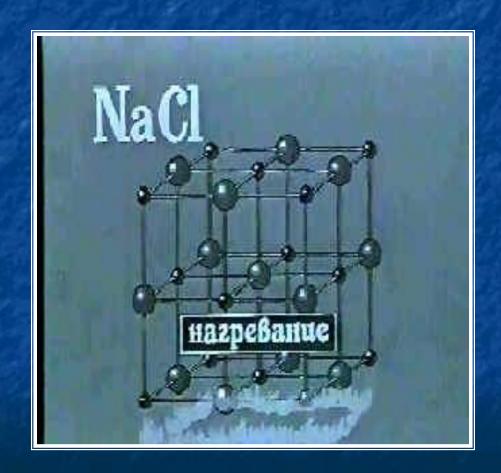

Органические вещества

Метан СН

Оксиды

NO, Na₂O CaO

Основные положения ТЭД



Электролиты при растворении распадаются на <u>положительно</u> заряженные ионы — катионы и отрицательно заряженные ионы —

Процесс распада электролита на ионы в растворе или расплаве называется электролитической диссоциацией.

Причины распада вещества на ионы в расплавах

Нагревание усиливает колебания ионов в узлах кристаллической решётки - кристаллическая решётка разрушается.

Pond Monekyn pactbophtena b процессе электролитической диссоциации

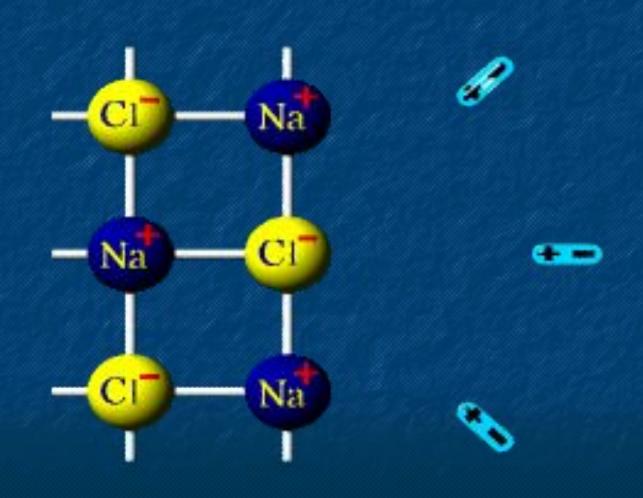
Электронная формула воды – Н:О:

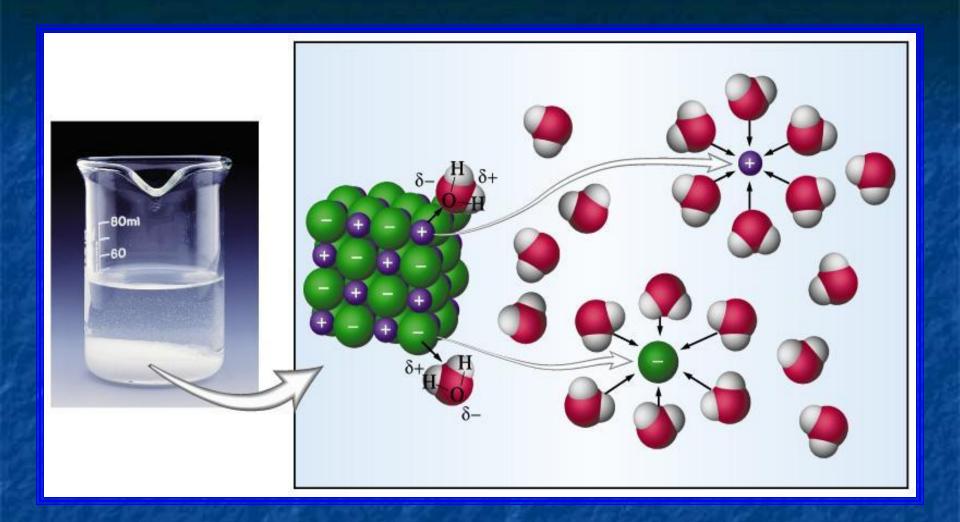
Структурная формула Н→О Н

- Пространственное строение
- Молекула воды является диполем

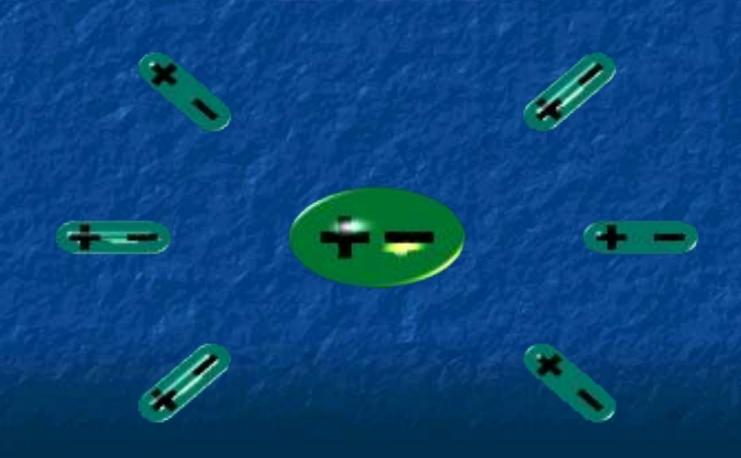

Причины диссоциации веществ в воде

1. Вода является полярной молекулой


диполи воды "вырывают" ионы из кристаллической решётки


2. Вода ослабляет взаимодействие между ионами.

Кристаллическая решетка разрушается


Диссоциация ионных соединений

В раствор переходят гидратированные ионы

Диссоциация соединений с ковалентной полярной связью

Образование в результате распада электролитов гидратированных ионов отражается при написании уравнений диссоциации, однако, чаще эти уравнения записывают в более короткой форме

NaCl+mH₂O
$$\leftrightarrows$$
Na⁺(H₂O)_x+Cl⁻(H₂O)_y
HCl+mH₂O \leftrightarrows H⁺(H₂O)_x+Cl⁻(H₂O)_y
NaCl \leftrightarrows Na⁺+Cl⁻
HCl \leftrightarrows H⁺+Cl⁻

Диссоциация кислот

$$HCI = H^{+} + CI^{-}$$
 $HNO_{3} = H^{+} + NO_{3}^{-}$
 $HCIO_{4} = H^{+} + CIO_{4}^{-}$

Кислоты — это электролиты, которые диссоциируют на катионы водорода и анионы кислотного остатка.

Диссоциация многоосновных кислот

Сильный электролит

$$H_2SO_4 \square H^+ + HSO_4 \alpha_1$$

$$HSO_4^- \square H^+ + SO_4^{2-}\alpha_2$$

$$\alpha_1 \approx \alpha_2$$

$$H_2SO_4 \square 2H^+ + SO_4^{2-}$$

Электролит средней силы

$$H_2SO_3 \square H^+ + HSO_3 \alpha_1$$

$$HSO_3$$
 $\square H^+ + SO_3^2 - \alpha_2$

$$\alpha_1 >> \alpha_2$$

$$H_2SO_3 \square H^+ + HSO_3^-$$

Многоосновные кислоты диссоциируют ступенчато. Каждая последующая степень

Диссоциация оснований

NaOH = Na⁺ + OH⁻
Ba(OH)₂ = BaOH⁺ + OH⁻
$$\rightarrow$$
 Ba²⁺ + 2OH⁻
KOH = K⁺ + OH⁻

Основания – это электролиты, которые диссоциируют на катионы металла и анионы

Диссоциация солей

Соли – это электролиты, которые диссоциируют на катионы металла или аммония \mathcal{NH}_4^+ и анионы киспотных остатков

Если в молекуле электролита содержатся связи разной полярности, в первую очередь диссоциируют наиболее полярные связи

NaHSO₄ Na⁺ HSO₄ H+SO₄-2
$$O \longrightarrow Na$$

$$O \longrightarrow Na$$

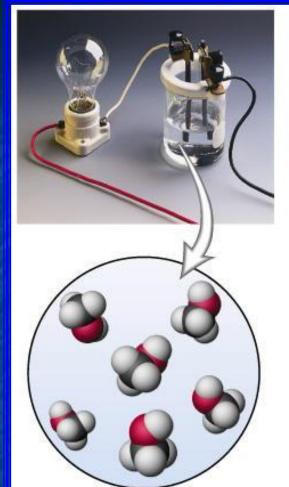
$$O \longrightarrow H$$

$$\delta > \delta_1$$

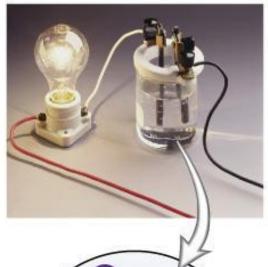
Количественная характеристика процесса диссоциации

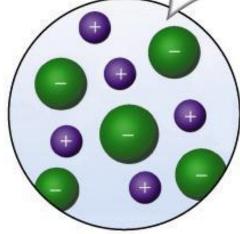
Степень диссоциации

$$\alpha = \frac{n}{N} \qquad \alpha\% = \frac{n}{N} \cdot 100\%$$

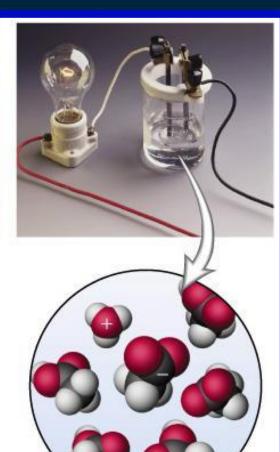

 Степень диссоциации — отношение числа распавшихся на ионы молекул к общему числу молекул в растворе.

Классификация электролитов

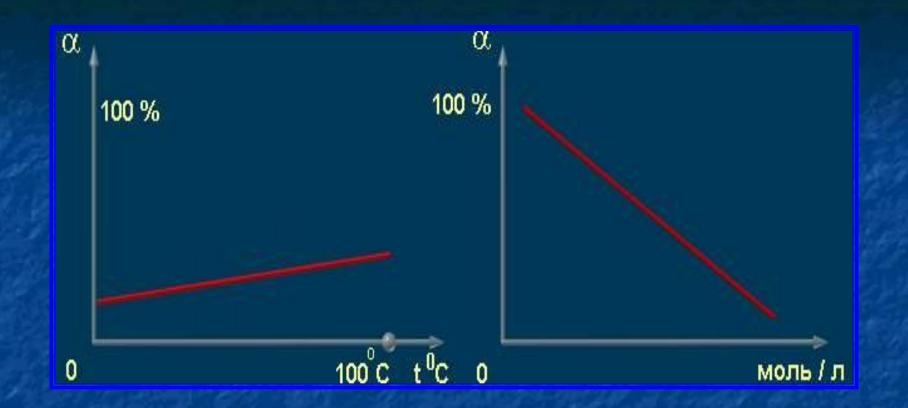

Сильные электролиты сс. > 30%


Электролиты средней силы 3% ≤ α ≤ 30%

> Слабые электролиты α < 3%



сильный электролит



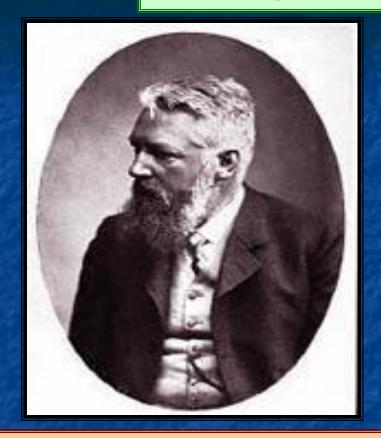
слабый

электролит

При увеличении температуры степень диссоциации электролита увеличивается

При увеличении концентрации электролита степень его диссоциации уменьшается

Константа диссоциации


Константа диссоциации:

$$HNO_2 \Leftrightarrow H^+ + NO_2$$

$$k_g = \frac{[H^{\dagger}] [NO_2]}{[HNO_{2 \text{ недис.}}]} = 5.1 \cdot 10^{-4}$$

Характеризует способность слабого электролита распадаться на ионы

Закон разбавления Оствальда

 $K = \alpha^2 C / 1 - \alpha$

α <<1

 $K \sim \alpha^2 C$

Вильгельм Оствальд (Ostwald W.F.) (2.IX.1853 - 4.IV.1932)

Степень диссоциации возрастает при разбавлении раствора

ПРОТОЛИТИЧЕСКАЯ ТЕОРИЯ И.Н.БРЕНСТЕДА

(1923 год)

Соединения, которые в своём составе не содержат <mark>ОН</mark> групп

NH₃; РН₃; амины; пиридин

при растворении в воде образуют

ОН группы

 $NH_3 + HOH \longrightarrow NH_4^+ + OH^-$

ПРОТОЛИТИЧЕСКАЯ ТЕОРИЯ И.Н.БРЕНСТЕДА

ОСНОВАНИЯ — вещества, способные присоединять к себе протон водорода

KOH + CH₃COOH
$$H_2O + CH_3COOK$$

OH - CH₃COOH $H_2O + CH_3COO$ $H_2O + H^+ + H_3O^+$
 $CO_3^{2-} + H^+ + HCO_3^-$
 $PO_4^{3-} + H^+ + HPO_4^{2-}$

ПРОТОЛИТИЧЕСКАЯ ТЕОРИЯ И.Н.БРЕНСТЕДА

КИСЛОТЫ – вещества, способные отщеплять протон водорода

$$HCI \rightleftharpoons H^{+} + CI^{-}$$

$$HCO_{3}^{-} \rightleftharpoons H^{+} + CO_{3}^{2-}$$

$$NH_{4}^{+} \rightleftharpoons H^{+} + NH_{3}^{-}$$

$$H_{3}O^{+} \rightleftharpoons H^{+} + H_{2}O$$

$$PH_{4}^{+} \rightleftharpoons H^{+} + PH_{3}^{-}$$

Условия протекания реакции ионного обмена

Реакции в растворах электролитов протекают до конца если:

• Образуется или растворяется осадок

• Выделяется газ

$$K_2S + 2HCI \longrightarrow H_2S_{(ras)} + 2KCI$$

• Образуется малодиссоциирующее вещество (например H₂O)

$$HCI + NaOH --> NaCl + H_2O$$

Произведение растворимости (*ПР***)** — произведение концентрации ионов малорастворимого электролита в его насыщенном растворе при постоянной температуре и давлении. Произведение растворимости — величина постоянная.

$$AgCl_{(g)} \rightleftharpoons Ag_{(p)}^{+} + Cl_{(p)}^{-}$$

$$K = \frac{\left[Ag^{+}\right] \cdot \left[Cl^{-}\right]}{\left[AgCl_{g}\right]}.$$

$$K \cdot \left[AgCl_{g}\right] = \left[Ag^{+}\right] \cdot \left[Cl^{-}\right] = IIP_{AgCl} = const.$$

$$B \text{ общем виде:}$$

$$A_{n} \cdot B_{m} \rightleftharpoons nA_{p}^{+m} + mB_{p}^{-m}$$

$$IIP = \left[A^{+m}\right]^{n} \cdot \left[B^{-n}\right]^{m}$$

рН - характеристика кислотности

Протолитическое равновесие в воде:

$$\mathbf{H}_{2}\mathbf{O} \leftrightarrow \mathbf{H}^{+} + \mathbf{O}\mathbf{H}^{-} \qquad \mathbf{K}_{p} = \frac{[\mathbf{H}^{+}][\mathbf{O}\mathbf{H}^{-}]}{[\mathbf{H}_{2}\mathbf{O}]}$$

При 25°C в чистой воде:

$$K_p[H_2O] = K_w = [H^+][OH^-] = 10^{-14}$$

Тогда
$$[H^+] = [OH^-] = 10^{-7}$$

$$pH = -lg [H^+]$$

Для чистой воды при стандартных условиях рН = 7

При **рН** > 7 раствор щелочной;

при рН < 7 раствор кислый

Способы измерения рН

Гидролиз солей

- Гидролиз обменное химическое
 взаимодействие катионов или анионов соли с
 молекулами воды в результате которого
 образуется слабый электролит.
- Любая соль продукт взаимодействия основания и кислоты. В зависимости от силы основания и кислоты выделяют четыре типа солей.

Классификация солей

Образованы сильным основанием и слабой кислотой

Образованы слабым основанием и сильной кислотой

Соли

Образованы слабым основанием и слабой кислотой Образованы сильной кислотой и сильным основанием

Гидролиз солей, образованных сильным основанием и слабой кислотой

$$KNO_2 = K^+ + NO_2^-$$

 $H_2O = OH^- + H^+$
 $KNO_2 + H_2O = KOH + HNO_2$
 $K^+ + NO_2^- + H_2O = K^+ + OH^-$
 $+ HNO_2$
 $NO_2^- + H_2O = OH^- + HNO_2$

Гидролиз солей, образованных слабым основанием и сильной кислотой

$$NiCl_2 = Ni^{2+} + 2Cl^{-}$$
 $H_2O = OH^{-} + H^{+}$
 $NiCl_2 + H_2O = NiOHCl + HCl$
 $Ni^{2+} + 2Cl^{-} + H_2O = NiOH^{+} + 2Cl^{-} + H^{+}$
 $Ni^{2+} + H_2O = NiOH^{+} + H^{+}$

Гидролиз солей, образованных слабым основанием и слабой кислотой

$$NH_4CN = NH_4^+ + CN^ H_2O = OH^- + H^+$$
 $NH_4CN + H_2O = NH_3 * H_2O +$
 HCN
 $NH_4^+ + CN^- + H_2O = NH_3 * H_2O$
 $+ HCN$

Гидролиз солей, образованных сильным основанием и сильной кислотой не происходит

$$KCI = K^{+} + CI^{-}$$
 $H_{2}O = OH^{-} + H^{+}$
 $KCI + H_{2}O \neq KOH + HCI$
 $K^{+} + CI^{-} + H_{2}O \square K^{+} + CI^{-} + GH^{-2} + H^{+}$
 $H_{2}O \square OH^{-} + H^{+}$

Гидролиз солей

Соли, не подвергающ иеся гидролизу	Соли, подвергающиеся гидролизу			
	Обратимо, со смещением равновесия			Необратимо
	Влево		Вправо	
←			→	
Со + Ск	Со + Сл.к	Сл.о + Ск	Сл.о + Сл.к	
	1. Гидролиз 1. по аниону; 2. Среда 2. раствора щелочная (рН >7)	по	 Гидролиз по катиону и аниону; Среда раствора зависит от константы диссоциации образующихся при гидролизе веществ 	