PACTBOPЫ

Растворы электролитов

Электролиты – вещества с ионной проводимостью.

Это растворы солей, кислоты, оснований, расплавы солей.

I – закон Рауля для электролитов:

$$\frac{(\mathbf{P}^0 - \mathbf{P})}{\mathbf{P}^0} = i\mathbf{N}_2$$

II закон Рауля

ΔΤκиπ = iEm ΔΤзам=iKm

Закон Вант-Гоффа

APOCM=icRT

і – поправочный коэффициент изотонический

i = число всех частиц в растворе число исходных частиц

$$\mathbf{i} = \frac{\Delta t_{\text{опыт}}}{\Delta t_{\text{расчёт}}} = \frac{\Delta P_{\text{опыт}}}{\Delta P_{\text{расчёт}}}$$

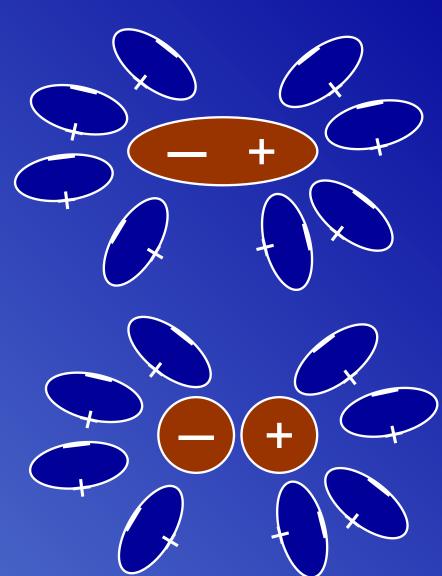
- і зависит от:
- природы раствора
- концентрации раствора
 і>1 для растворов солей, кислот и оснований

Теория электролитической диссоциации Аррениуса

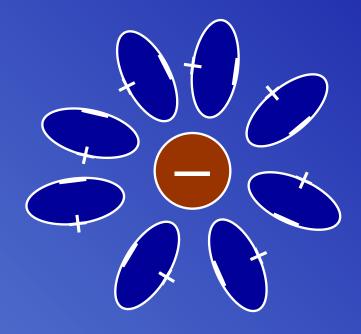
Распад молекул электролитов на ионы в среде растворителя под действием молекул растворителя.

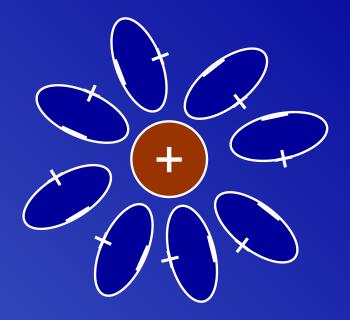
NaCl → Na⁺ + Cl⁻

Количество частиц при диссоциации увеличивается.


Количественная характеристика процесса диссоциации выражается степенью электролитической диссоциации – α.

α =
$$\frac{C_{\text{число молекул распавшихся на ионы}}{C_{\text{общее число молекул электролита}}$$


Современная теория электролитической диссоциации:


1) Гидратация

2) Ионизация

3) Диссоциация

$$H^{+} + H_{2}O = H_{3}O^{+}$$

 $HCI + H_{2}O = H_{3}O^{+} + CI^{-}$

Способность гидратироваться зависит:

- от природы ионов
- от заряда иона
- от размера иона
- от строения электронной оболочки

$$AI^{3+} > Cr^{3+} > Zn^{2+} > Na^{+}$$

Энтальпия гидратации ионов:

АН гид соли = АН гид + АН гид ΔS>0 Гидратация сопровождается значительным разрушением структуры ΔS<0 если структура растворителя упорядочивается

```
По степени диссоциации:
Сильные электролиты – α > 50% все
соли, неорганические
                                      кислоты,
                         щёлочных
гидроксиды
щелочноземельных металлов: НСІ,
H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>
Слабые электролиты – \alpha < 50\% H<sub>2</sub>S,
H<sub>2</sub>SiO<sub>3</sub>, H<sub>2</sub>CO<sub>3</sub>, CH<sub>3</sub>COOH, гидрооксиды
d – элементов (нерастворимые
вещества), NH<sub>4</sub>OH.
```

Растворы слабых электролитов

$$\mathsf{K}_{\mathsf{D}} = \frac{[\mathsf{A}^+][\mathsf{B}^-]}{[\mathsf{A}\mathsf{B}]}$$

Чем больше К_д тем сильнее диссоциирует электролит.

$$NH_4OH = NH_4^+ + OH^-$$

$$K_{\mu} = \frac{[NH_4^+][OH^-]}{[NH_4OH]}$$

Закон разбавления Освальда

$$\alpha$$
<<1, To $\alpha \approx \sqrt{K_A \cdot \frac{1}{C}}$

- С разбавлением раствора степень диссоциации увеличивается.
- с молярная концентрация электролита
 сα концентрация каждого из ионов
 с(1-α) концентрация
 недиссоциирующих частиц.

Растворы сильных электролитов

- от наличия одноимённых ионов
- I. $CH_3COOH \leftrightarrow H^+ + CH_3COO^-$
- II. CH₃COONa → CH₃COO⁻ + Na⁺
 - от температуры, увеличение t° вызывает ассоциацию ионов.

1907 Льюис → активность (a) → эффективная концентрация ионов.

$$a = f \cdot c$$
; $f = 1$ $a = c$

Активность отражает:

- 1. Неполную диссоциацию молекул
- 2. Взаимное притяжение разноименных ионов
- 3. Влияние гидратации ионов
- 4. Взаимодействия между молекулами растворителя.

$$\lg f = -A\sqrt{J}$$

Коэффициент активности зависит от ионной силы раствора (J).

А – коэффициент пропор., зависит от вида растворителя.

Кислоты – диссоциируют на катионы H⁺ и анион кислотного остатка

$$HCI \rightarrow H^{+} + CI^{-}$$
 $H_{3}PO_{4} \leftrightarrow [H^{+}][H_{2}PO_{4}]^{-}$
 $K_{1} = \frac{[H^{+}][H_{2}PO_{4}]^{-}}{[H_{3}PO_{4}]}$

$$(H_{2}PO_{4})^{-} \leftrightarrow H^{+} + (HPO_{4}^{})^{2-}$$

$$K_{2} = \frac{[H^{+}][HPO_{4}^{2-}]}{[H_{2}PO_{4}]^{-}}$$

$$(HPO_{4}^{})^{2-} \leftrightarrow H^{+} + PO_{4}^{}$$

$$K_3 = \frac{[H^+][HPO_4]^{3-}}{[HPO_4^{2-}]}$$

$$K_1 > K_2 > K_3$$

Ионное произведение воды. pH – растворов.

$$H_2O \leftrightarrow H^+ + OH^ Kg = \frac{[H^+][OH^-]}{[H_2O]} = 1,2 \cdot 10^{-16}$$

$$K'_{\text{воды}} = [H^+][OH^-]$$
 — ионное произведение воды

$$K_{\text{воды}} = [H^+][OH^-] = 1,1\cdot 10^{-14}$$
 г-ион/_л — увеличивается с ростом температуры.

$$[H^+][OH^-] = 1 \cdot 10^{-14}$$
 тогда $[H^+] = [OH^-] = \sqrt{10^{-14}} = 10^{-7}$ г-ион/

Нейтральный раствор

$$[H^+] < 10^{-7} \text{ }^{\text{г-ион}}/_{\text{л}}$$

 $[OH^-] > 10^{-7} \text{ }^{\text{г-ион}}/_{\text{л}}$

Водородный показатель $-La[H^+] = pH$

В нейтральной среде:

$$[H^+] = 10^{-7}$$

-Lg[10^{-7}] = 7 \rightarrow pH = 7

В кислой среде:

[H⁺] =
$$10^{-5}$$

-Lg[10^{-5}] = $5 \rightarrow pH = 5$
pH < 7 ([H⁺] < 10^{-7})

В щелочной среде:

$$[H^{+}] = 10^{-9}$$

-Lg[10⁻⁹] = 9 \rightarrow pH = 9
pH > 7 ([H⁺] > 10⁻⁷)

Пример 1:

$$[OH^{-}] = 10^{-11}$$

$$pH = ?$$

$$[H^+][OH^-] = 10^{-14}$$

 $x \cdot 10^{-11} = 10^{-14}$

$$x = \frac{10^{-14}}{10^{-11}} = 10^{-3}$$

$$[H^+] = 10^{-3} \, \text{г-ион}/_{\pi}$$
 $-\text{Lg}[10^{-3}] = 3$
 $\text{рH} = 3 \, (\text{кислая среда})$

Пример 2: pH = 2 $OH^{-} = ?$

$$[H^{+}] = 10^{-2}$$

$$10^{-2} \cdot x = 10^{-14}$$

$$x = \frac{10^{-14}}{10^{-2}} = 10^{-12}$$

$$[O[H^{-}] = 10^{-12}] = 10^{-12}$$