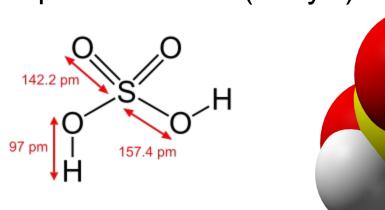


Исторические сведения

молекула серной кислоты по Дальтону:


Sulphuric acid

- Серная кислота известна с древности. Первое упоминание о кислых газах, получаемых при прокаливании квасцов или железного купороса «зеленого камня», встречается в сочинениях, приписываемых арабскому алхимику Джабир ибн Хайяну.
- Позже, в IX веке персидский алхимик Ар-Рази, прокаливая смесь железного и медного купороса (FeSO₄•7H₂O и CuSO₄•5H₂O), также получил раствор серной кислоты. Этот способ усовершенствовал европейский алхимик Альберт Магнус, живший в XIII веке.

Серная кислота

• Се́рная кислота́ H_2SO_4 — сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота — тяжёлая маслянистая жидкость без цвета и запаха. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO₃. Если молярное отношение SO_3 : $H_2O < 1$, то это водный раствор серной кислоты, если > 1, — раствор SO₃ в

серной кислоте (олеум).

Свойства водных растворов серной кислоты и олеума

Содержание % по массе		Плотность при	Температура	Температура	
H ₂ SO ₄	SO ₃ (свободный)	20 °C, г/см ³	плавления, °С	кипения, °С	
10	-	1,0661	-5,5	102,0	
20	-	1,1394	-19,0	104,4	
40	-	1,3028	-65,2	113,9	
60	-	1,4983	-25,8	141,8	
80	-	1,7272	-3,0	210,2	
98	-	1,8365	0,1	332,4	
100	-	1,8305	10,4	296,2	
104,5	20	1,8968	-11,0	166,6	
109	40	1,9611	33,3	100,6	
113,5	60	2,0012	7,1	69,8	
118,0	80	1,9947	16,9	55,0	
122,5	100	1,9203	16,8	44,7	

Химические свойства

$$\begin{split} \mathbf{Mg} + \mathbf{H_2SO_4} &\rightarrow \mathbf{MgSO_4} + \mathbf{H_2} \uparrow \\ \mathbf{CuO} + \mathbf{H_2SO_4} &\rightarrow \mathbf{CuSO_4} + \mathbf{H_2O} \quad \mathbf{Cu} + \mathbf{H_2SO_4} \not \leftthreetimes \\ \mathbf{NaOH} + \mathbf{H_2SO_4} &\rightarrow \mathbf{NaHSO_4} + \mathbf{H_2O} \\ \mathbf{H_2SO_4} + \mathbf{BaCI_2} &= \mathbf{BaSO_4} \downarrow + \mathbf{2HCI} \\ \mathbf{Cu} + \mathbf{H_2SO_{4(конп)}} &\rightarrow \mathbf{SO_2} + \mathbf{CuSO_4} + \mathbf{H_2O} \\ \mathbf{C} + \mathbf{2H_2SO_4} &= \mathbf{2SO_2} + \mathbf{2H_2O} + \mathbf{CO_2} \end{split}$$

Токсическое действие

• Серная кислота и олеум — очень едкие вещества. Они поражают кожу, слизистые оболочки, дыхательные пути (вызывают химические ожоги). При вдыхании паров этих веществ они вызывают затруднение дыхания, кашель, нередко — ларингит, трахеит, бронхит и т. д. ПДК аэрозоля серной кислоты в воздухе рабочей зоны 1,0 мг/м³, в атмосферном воздухе 0,3 мг/м³ (максимальная разовая) и 0,1 мг/м³ (среднесуточная). Поражающая концентрация паров серной кислоты 0,008 мг/л (экспозиция 60 мин), смертельная 0,18 мг/л (60 мин). Класс опасности ІІ. Аэрозоль серной кислоты может образовываться в атмосфере в результате выбросов химических и металлургических производств, содержащих оксиды S, и выпадать в виде кислотных

дождей.

Серную кислоту применяют:

- в производстве минеральных удобрений;
- как электролит в свинцовых аккумуляторах;
- для получения различных минеральных кислот и солей;
- в производстве химических волокон, красителей, дымообразующих веществ и взрывчатых веществ;
- в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности;
- в пищевой промышленности зарегистрирована в качестве пищевой добавки **E513**(эмульгатор);
- в промышленном органическом синтезе в реакциях:
 - дегидратации (получение диэтилового эфира, сложных эфиров);
 - гидратации (этанол из этилена);
 - сульфирования (синтетические моющие средства и промежуточные продукты в производстве красителей);
 - алкилирования (получение изооктана, полиэтиленгликоля, капролактама)
 и др.

Стандарты серной кислоты

- Кислота серная техническая ГОСТ 2184—77
- Кислота серная аккумуляторная. Технические условия ГОСТ 667—73
- Кислота серная особой чистоты. Технические условия ГОСТ 14262—78
- Реактивы. Кислота серная. Технические условия ГОСТ 4204—77

Производство серной кислоты

Сырьём для получения серной кислоты служат сера, сульфиды металлов, сероводород, отходящие газы теплоэлектростанций, сульфаты железа, кальция и др.

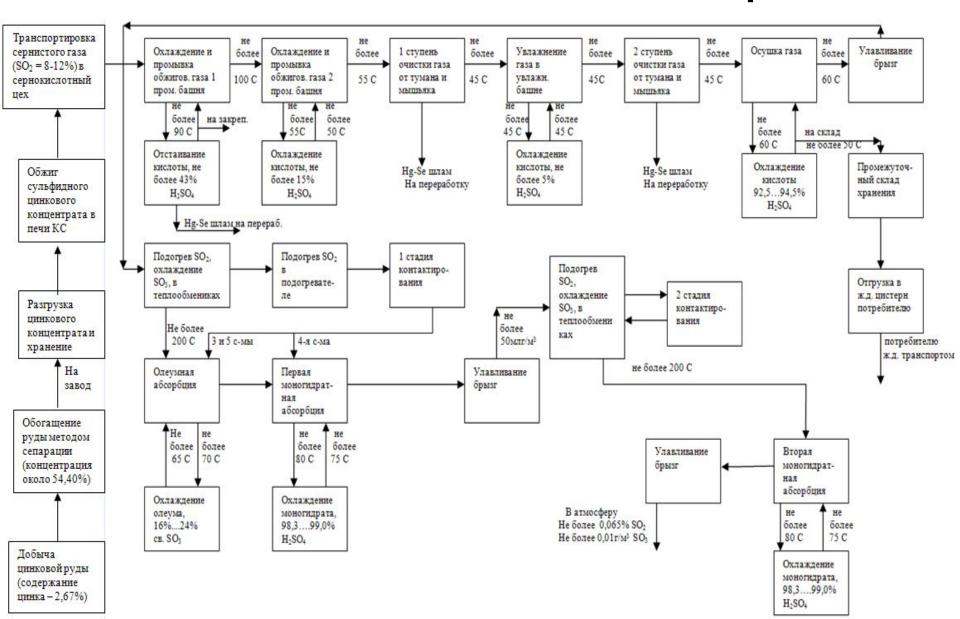
Получение серной кислоты (т.н. купоросное масло) из железного купороса - термическое разложение сульфата железа (II) с последующим охлаждением смеси

$$2FeSO4·7H2O \rightarrow Fe2O3+SO2+H2O+O2$$

SO₂+H₂O+O₂ \Rightarrow H₂SO₄

Основные стадии получения серной кислоты:

- 1) Обжиг сырья с получением SO₂
- 2) Окисление SO_2 в SO_3
- 3) Абсорбция SO_3

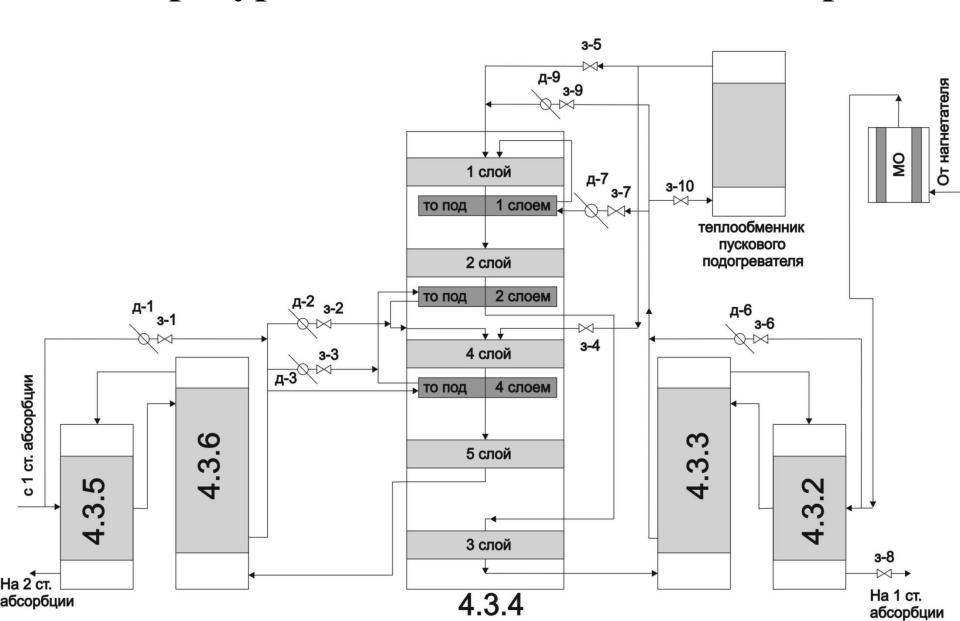

В промышленности применяют два метода окисления SO_2 в производстве серной кислоты: контактный — с использованием твердых катализаторов (контактов), и нитрозный — с оксидами азота.

Из минерала пирита на катализаторе — оксиде ванадия (V). $4\text{FeS}_2 + 11\text{O}_2 = 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$ $2\text{SO}_2 + \text{O}_2 (\text{V}_2\text{O}_5) \rightarrow 2\text{SO}_3$ $5\text{O}_3 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4$

Нитрозный метод получения серной кислоты $SO_2 + NO_2 \rightarrow SO_3 + NO\uparrow$. $2NO+O_2 \rightarrow 2NO_2$

При реакции SO_3 с водой выделяется огромное количество теплоты и серная кислота начинает закипать с образованием "туманов" $SO_3 + H_2O = H_2SO_4 + Q$ Поэтому SO_3 смешивается с H_2SO_4 , образуя раствор SO_3 в 91% H_2SO_4 - олеум

Технологическая схема производства серной кислоты методом двойного контактирования


 $SO_2 + \frac{1}{2}O_2 \leftrightarrow SO_3 + Q$

Температурный и манометрический режим работы КА

Слой	Температурный режим (° С)		Манометрический режим (КПа)		X,%
	вход	выход	вход	выход	
1	410-430	590-610	26,3-26,8	23,3-23,8	65,0
2	470-490	520-540	22,3-22,8	20,8-21,3	84,6
3	440-450	465-475	19,6-19,9	18,6-18,9	93,0
4	428-430	440-450	8,3-8,8	7,3-7,8	94,0
5	420-430	421-431	6,5-7,0	5,5-6,0	98,0

Аппаратурная схема контактного аппарата

Материальный баланс

Введено			Получено		
Реагенты	кг	% масс	Продукты	кг	%масс
Cepa	395,2	8,4	Серная	1200	25,5
			кислота:		
Вода	288,98	6,14	H_2SO_4	1116	23,75
Воздух:	4023,12		H_2O	84	1,8
21% O ₂	937,43	19,9	Выхлопные		
_			газы:		
79%N ₂	3085,69	65,56	SO_2	15,17	0,32
			N_2	3085,69	65,68
			SO_3	4,65	0,098
			O_2	372,1	7,92
			S	19,76	0,42
			Невязка	9,9	0,21
Всего	4707,3	100	Всего	4697,4	100

Заключение

В производстве H_2SO_4 соблюдены основные направления развития химической промышленности:

- Технология малоотходная переход сырья в целевой продукт достигает 99%.
- Энергосберегающее, так как процесс обеспечивает сам свое энергосбережение.

Эта химическая технология обладает рядом функций:

- Рациональное использование сырья и энергии.
- Масштабность и дешевизна.

Поскольку процесс непрерывен, он обладает рядом достоинств:

- Большое количество продукта с 1 объема аппарата высокая интенсивность процесса.
- Исключение потерь тепла из-за термодинамичности нагрев охлаждение.
- Легкость автоматизации.

Также процесс учитывает основные принципы химической технологии:

- Наибольшая интенсивность процесса;
- Наилучшее использование сырья;
- Наибольшее использование энергии.

Спасибо за внимание

