
## Пластмассы, синтетические каучуки

Презентацию подготовили ученицы 11-А класса Алчевской ИТГ Мозолевская Анастасия, Ткаченко Анастасия

## Пластмассы



**ПЛАСТМАССЫ** (пластические массы, пластики) - большой класс полимерных органических легко формуемых материалов, из которых можно изготавливать легкие, жесткие, прочные, коррозионностойкие изделия.



## Примеры пластических материалов в природе:



асфальт



битум



смола хвойных деревьев



копал

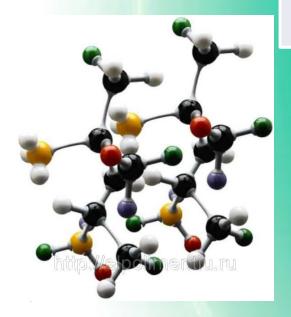
### Преобразования под воздействием хим. реакций:

целлюлоза

бумага, моющие средства и другие ценные материалы

каучук

резина и изолирующие материалы

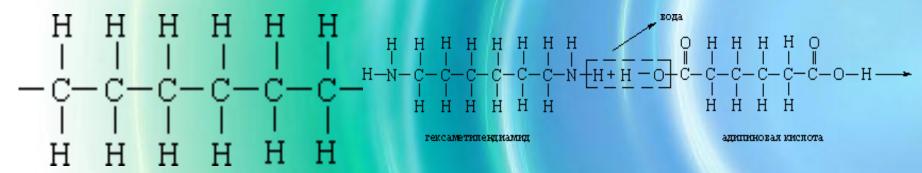

канифоль

становится более прочной и устойчивой к действию растворителей

### Получение синтетических полимеров:

### мономер

### полимер




прядение, отливание, пресс или формирование в готовое изделие

## Полимеризация: «Полимер» - много (поли-) + часть (мерос)



### поликонденсация

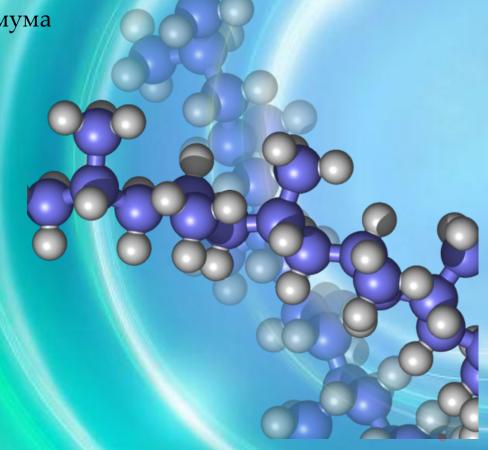


полиэтилен

найпон

В реакции конденсации водородный атом одного мономера и ОН-группа другого отщепляются с образованием молекулы воды.

# Основные свойства пластмасс


### Химические свойства:

- 1. С точки зрения химического поведения полимер похож на мономер, из которого он получен.
- 2. Эти полимеры ведут себя как углеводороды. Они:
  - 1) растворимы в углеводородах,
  - 2) не смачиваются водой,
  - 3) не реагируют с кислотами и основаниями,
  - 4) горят, подобно углеводородам,
  - 5) могут хлорироваться,
  - 6) бромироваться,
  - 7) нитроваться и сульфироваться ( в случае полистирола).

### Физические свойства

зависят не только от характера мономера, но в большей степени от степени полимеризации (среднего количества мономерных звеньев в цепи) и от того, как цепи расположены в конечной макромолекуле.

Механическая прочность наблюдается уже при СП 50–100, достигая максимума при СП выше 1000.



### Термические и механические свойства

Чем выше степень кристалличности, тем тверже продукт, тем выше его температура размягчения и больше устойчивость к набуханию и растворению; низкой степенью кристалличности характеризуются более мягкие продукты с более низкими температурами тепловой деформации и более легкой растворимостью.





### Электрические свойства

Все органические пластмассы являются изоляторами, а потому находят применение в электротехнике и электронике.

Таблица 1. ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ ПРОМЫШЛЕННЫХ ПЛАСТМАСС

| Полимер                   | Диэлектрическ<br>ая<br>проницаемость<br>при 60 Гц | Электри-ческая<br>прочность, В/см |                    | Удельное<br>сопротивление,<br>ОмЧсм |
|---------------------------|---------------------------------------------------|-----------------------------------|--------------------|-------------------------------------|
| Полиэтилен                | 2,32                                              | 6410 <sup>6</sup>                 | 5410 <sup>-4</sup> | 10 <sup>19</sup>                    |
| Полипропилен              | 2,5                                               | 2410 <sup>6</sup>                 | 7410-4             | 10 <sup>18</sup>                    |
| Полистирол                | 2,55                                              | 7410 <sup>6</sup>                 | 8410 <sup>-4</sup> | 10 <sup>20</sup>                    |
| Полиакрилонит<br>рил      | 6,5                                               | -                                 | 0,08               | 10 <sup>14</sup>                    |
| Найлон-6,6                | 7,0                                               | 3410 <sup>3</sup>                 | 1,8                | 10 <sup>14</sup>                    |
| Полиэтилен-<br>терефталат | 3,25                                              | 7Ч10 <sup>3</sup>                 | 0,002              | 10 <sup>18</sup>                    |

## Термопластические

### материалы

Полиэтилен  $[-CH_2-CH_2-]_n$ 





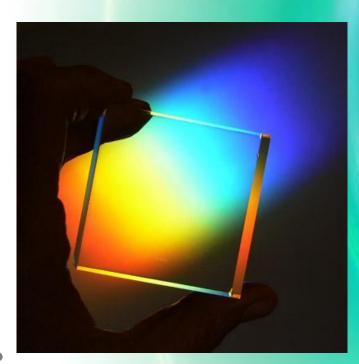




## $\frac{\Pi \text{олипропилен}}{[-\text{CH}_2-\text{CH}(\text{CH}_3)-]_n}$



## $\frac{\Pi \text{OЛИСТИРOЛ}}{[-\text{CH}_2-\text{CH}(\text{C}_6\text{H}_5)-]_n}$








## Полиметилметакрилат $[-CH_2-C(COOCH_3)(CH_3)-]_n$





## $\frac{\Pi \text{оливинилхлорид}}{[-\text{CH}_2-\text{CHCl-}]_n}$





## Полиакрилонитрил Политетрафторэтилен $[-CH_2-CH(CN)-]_n$ $[-CF_2-CF_2-]_n$









### <u>Полиоксиметилен [–СН $_2$ –О–]</u>

### Полиоксиэтилен [-СН2-СН2-О-]



Полиамиды





Полиэфиры



# Реактопластические материалы

Феноло-формальдегидные смолы





### Мочевино-формальдегидные и меламиноформальдегидные смолы









### Алкидные смолы





### Полиэфиры







### Заключение

\_

+

негативное воздействие на человека

негативное воздействие на планету низкая цена

легкость переработки

уникальные свойства

### Как узнать насколько опасна пластмасса?

### Виды пластмасс и их маркировка















# Синтетические каучуки



СИНТЕТИЧЕСКИЕ КАУЧУКИ (СК) – большая группа полимерных материалов разнообразного строения и назначения. Каучуки относятся к эластомерам – высокомолекулярным соединениям, обладающим в определенном температурном интервале способностью к большим обратимым деформациям.



### История создания

1879 г. – 1е получение каучукоподобного вещества при обработке соляной кислотой французским химиком Г.Бушарда.

1916 г. – были выпущены первые промышленные партии синтетического каучука – диметилкаучука – на основе разработок Кондакова в Германии.

1910 г. – С.В. Лебедев впервые получил синтетический бутадиеновый каучук.

1932 г. – Лебедевым и его сотрудниками был успешно разработан недорогой и эффективный метод разработки промышленного производства СК.





И. Кондаков

С.В.Лебедев

### Классификация:

- по названию мономеров, использованных для их получения
- по характерной группе атомов, входящих в их состав

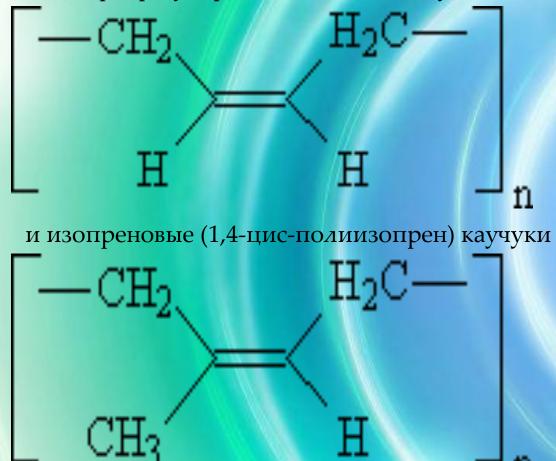
### Получение:

• полимеризация диенов и алкенов

### Применение:

- общего назначения
- специального назначения

### СК общего назначения


• высокая эластичность при обычных температурах (шины, транспортёрные ленты, обувь и др.)

### СК специального назначения

- •стойкость к действию растворителей, масел, кислорода, озона
- •тепло- и морозостойкость и др.

### Примеры некоторых СК

Среди каучуков общего назначения по-прежнему широко распространены бутадиеновые СКД (стереорегулярный 1,4-цис-полибутадиен).



### Бутилкаучук (БК)

$$\begin{bmatrix} -\text{CH}_2 & \text{H}_2\text{C} - \\ \text{CH}_3 & -\text{C} - \text{CH}_2 - \\ \text{CH}_3 & \end{bmatrix}_{\mathbf{m}}$$



### Полихлоропреновые каучуки

$$\begin{bmatrix} -CH_2 & H_2C - \end{bmatrix}$$





### Фторкаучуки



### Кремнийорганические каучуки

m

## Заключение

