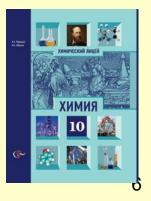

Состав УМК

- Программа 10-11 класс (с учетом последних требований к программам)
- Учебник 10 класса
 - **/•** Учебник 11 класса
 - Задачник 10 класса
 - Задачник 11 класса
 - Книга для учителя

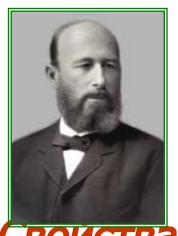
Учебник 10 класса


- 1. Введение в курс органической химии
- 2. Алканы
- 3. Непредельные УВ и циклоалканы
- 4. Ароматические углеводороды
- 5. Галогенпроизводные углеводородов *
- 6. Спирты и фенолы
- 7. Карбонильные соединения. Альдегиды и кетоны

Учебник 10 класса

- 8. Карбоновые кислоты
- 9. Углеводы
- 10. Амины
- 11. Аминокислоты. Белки
- 12. Гетероциклические соединения. НК *
- 13. Теоретические основы курса органической химии

Практикум

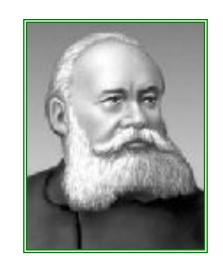


Учебник 11 класса

- Глава 1. Строение вещества
- Глава 2. Основы теории химических процессов
- Глава 3. Растворы. Химические реакции в растворах
- Глава 4. Окислительно-восстановительные реакции
- Глава 5. Классификация веществ. Свойства классов неорганических веществ

Учебник 11 класса

- Глава 6. Неметаллы
- Глава 7. Металлы
- Глава 8. Стехиометрические и газовые законы в химии
- Глава 9. Химия в нашей жизни
- Глава 10. Экспериментальные основы химии


1861 г. А.М. Бутлеров

Свойства веществ определяются их строением и наоборот,

зная строение, можно прогнозировать свойства

Состав Строение Свойства

1869 г. В.В. Марковников

$$H_3C$$
— $CH=CH_2$ + HBr — H_3C — $CH-CH_3$ (по правилу) Br F_3C — $CH=CH_2$ + HBr — F_3C — CH_2 - CH_2 Br (против правила) 10

ЭЛЕКТРОННЫЕ ЭФФЕКТЫ ЗАМЕСТИТЕЛЕЙ (ДОНОРНЫЕ, АКЦЕПТОРНЫЕ)

изменение электронной плотности в МОЛЕКУЛЕ

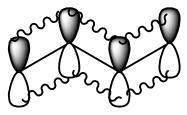
РЕАКЦИОННАЯ СПОСОБНОСТЬ

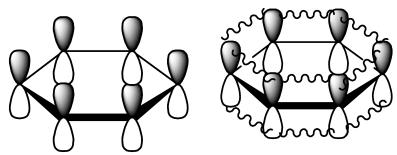
І. Индуктивный эффект

$$C - C - C \xrightarrow{\delta^+} X - I$$

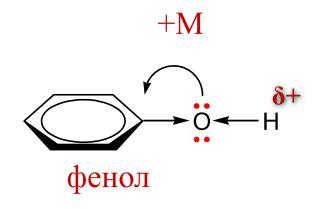
$$C-C-C-Y$$

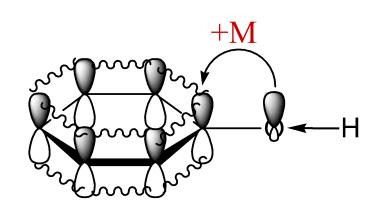
F₃C
$$\leftarrow$$
CH=CH₂
+I
H₃C \rightarrow CH=CH₂

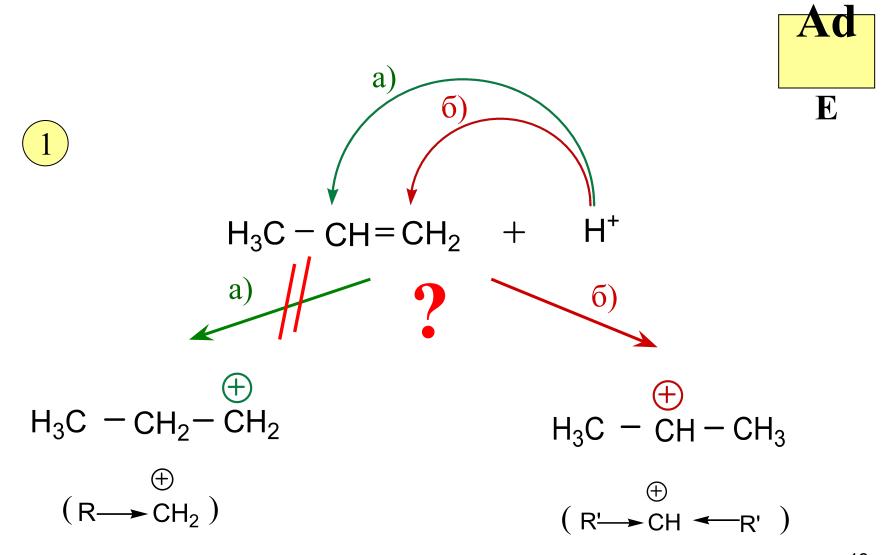

$$Csp^3$$
 Csp^2 Csp 2,5 2,8 3,211


$$90 \quad 2,5 \quad 2,8 \quad 3,2_1$$

II. Эффект сопряжения (мезомерный эффект, ± М)


а) π - π -сопряжение



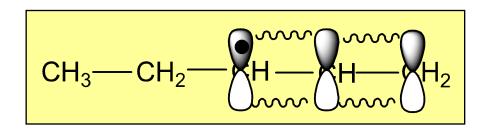


б) p- π -сопряжение

ЭЛЕКТРОННАЯ ИНТЕРПРЕТАЦИЯ ПРАВИЛА МАРКОВНИКОВА

$$H_{3}C \longrightarrow CH = CH_{2} + H_{-}Br \longrightarrow H_{3}C - CH - CH_{3}$$

$$Br$$


$$F_3C \leftarrow CH = CH_2 + H-Br \longrightarrow F_3C - CH_2 - CH_2$$
Br

Радикальное замещение в алкенах

$$\gamma$$
 β α $h\nu$ $CH_3-CH_2-CH=CH_2+CI_2$

S_R

——
$$CH_3$$
— CH_2 — CH — CH = CH_2 + HCI
 CI (реакция Львова)

радикал аллильного типа

$$CH_2$$
— CH_2 — CH = CH_2

Глава 4. Ароматические углеводороды

§ 36. Бензол. История открытия

18 июня 1825 г.

$$C_6H_5COOH \xrightarrow{CaO, t^o} C_6H_6$$

Физические свойства бензола
Температура плавления +5,5 °C
Температура кипения +80 °
С
Плотность 0,86 г/см³
Характерный запах!

1865 г. А. Кекуле

$$\begin{array}{c|c} H \\ C \\ H \\ C \\ CH \\ \end{array} \equiv \begin{array}{c|c} CH \\ C \\ CH \\ \end{array}$$

Формула Кекуле и ее противоречивость

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} & \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} & \begin{array}{c} \\ \end{array} \end{array} & \begin{array}{c} \\ \end{array} & \end{array} & \begin{array}{c} \\ \end{array} & \end{array} & \begin{array}{c} \\ \end{array} & \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\$$

ОСНОВНЫЕ ВЫВОДЫ

- 1.Бензол (C_6H_6) жидкость, огнеопасная и токсичная, с характерным запахом.
- 2.Структурная формула бензола, предложенная А.Кекуле, представляет собой шестичленный цикл с чередующимися двойными и одинарными связями.
- 3. Типичные реакции для ненасыщенных углеводородов (обесцвечивание бромной воды и раствора перманганата калия) не характерны для бензола.
- 4. Реакции присоединения для бензола идут в жестких условиях.

Ключевые понятия

Арены

Структурная формула

Кекуле

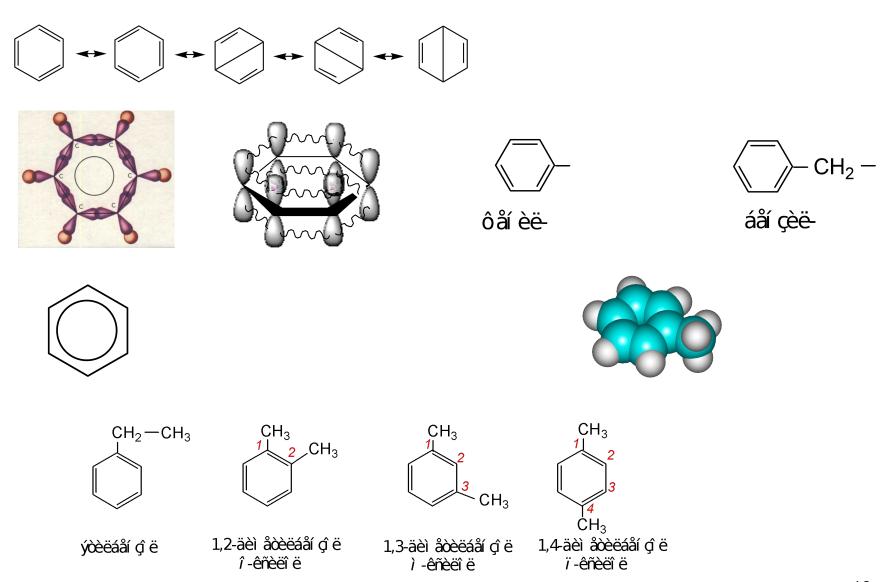
Призман

Бензол Дьюара

ВОПРОСЫ И ЗАДАНИЯ

Среди структурных формул, приписываемых бензолу, была и такая:

CH₂=C=CH-CH=C=CH₂.


Сколько изомеров составов C_6H_5X , $C_6H_4X_2$ и $C_6H_3X_3$

можно ожидать на основании этой формулы?

Сколько изомерных производных бензола

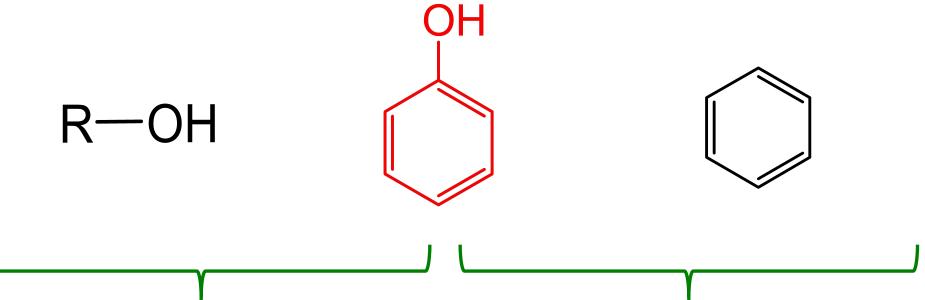
такого состава существует на самом деле?

§ 37. Электронное и пространственное строение бензола. Изомерия и номенклатура гомологов бензола

§39. Химические свойства бензола

§40. Ориентационные эффекты заместителей

§41 . Получение аренов


§ 42. Особенности химических свойств гомологов бензола

§ 43. Конденсированные ароматические углеводороды

§44. Синтезы на основе бензола

§45. Природные источники углеводородов

ВЗАИМНОЕ ВЛИЯНИЕ АТОМОВ В МОЛЕКУЛЕ НА ПРИМЕРЕ ФЕНОЛА

Как природа радикала влияет на кислотные свойства?

Как «ОН-группа» изменила реакционную способность бензольного кольца?

Влияние природы радикала на кислотные свойства ОН-группы

$$R-OH + NaOH \longrightarrow R-ONa + H_2O$$
 $OH + NaOH \longrightarrow ONa + H_2O$
 $R-OH + NaOH \longrightarrow ONA + H_2OH$
 $R-OH + NaOH \longrightarrow ONA$
 $R-OH + NaOH \longrightarrow ONA + H_2OH$
 $R-OH + NaOH \longrightarrow ONA$
 $R-OH + NaOH$

Влияние природы радикала на кислотные свойства ОН-группы

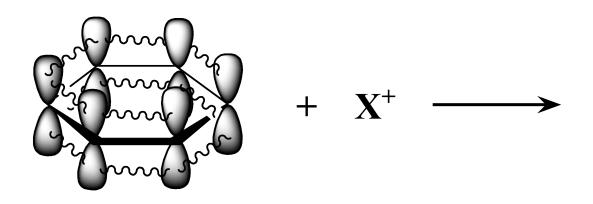
R-OH + NaOH
$$\longrightarrow$$
 R-ONa + H₂O

OH + NaOH \longrightarrow ONa + H₂O

CH₃COOH + NaHCO₃
$$\longrightarrow$$
 CH₃COONa + CO₂ + H₂O \longrightarrow OH + NaHCO₃ \longrightarrow ONa + CO₂ + H₂O \longrightarrow OH + NaHCO₃

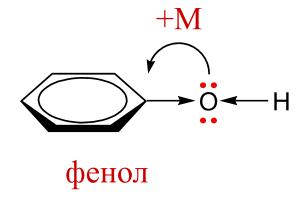
+ M

Влияние природы радикала на кислотные свойства ОН-группы


$$R-OH + NaOH$$
 — $R-ONa + H_2O$ — $ONa + H_2O$ —

(пикриновая кислота)

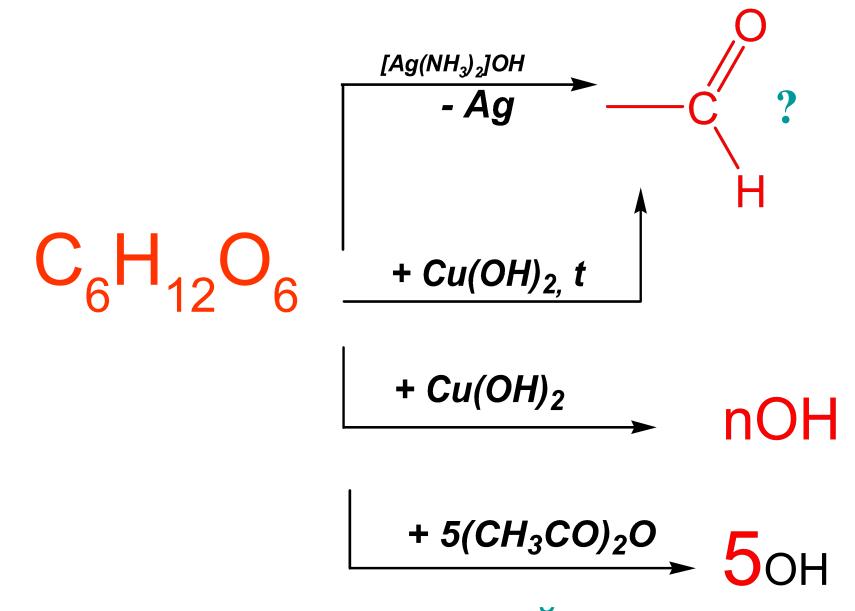
Влияние ОН-группы на реакционную способность бензольного кольца в реакциях \mathbf{S}_{E}


I.
$$+$$
 Br₂ $+$ HBr бромбензол

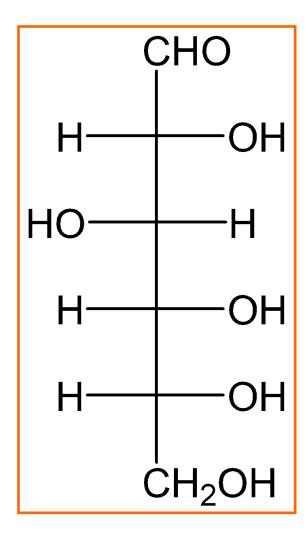
25

Br—Br + FeBr₃
$$\longrightarrow$$
 [Br—Br—FeBr₃] \longrightarrow

$$\longrightarrow$$
 Br⁺ + [FeBr₄]⁻



Кислотные свойства спиртов и фенолов


$$R-OH + NaOH \longrightarrow R-ONa + H_2O$$
 $OH + NaOH \longrightarrow ONa + H_2O$
 $R \longrightarrow OH$
 $R \longrightarrow OH$

+ M > -I

ОН
$$+ 3 \text{ HO-NO}_2$$
 $+ 3 \text{H}_2\text{O}_4$ (конц.) $+ 3 \text{H}_2\text{O}_2$ $+ 3 \text{H}_2\text{O}_2$ $+ 3 \text{H}_2\text{O}_3$ $+ 3 \text{H}_2\text{O}_4$ $+ 3 \text{H}_2\text{O}_4$

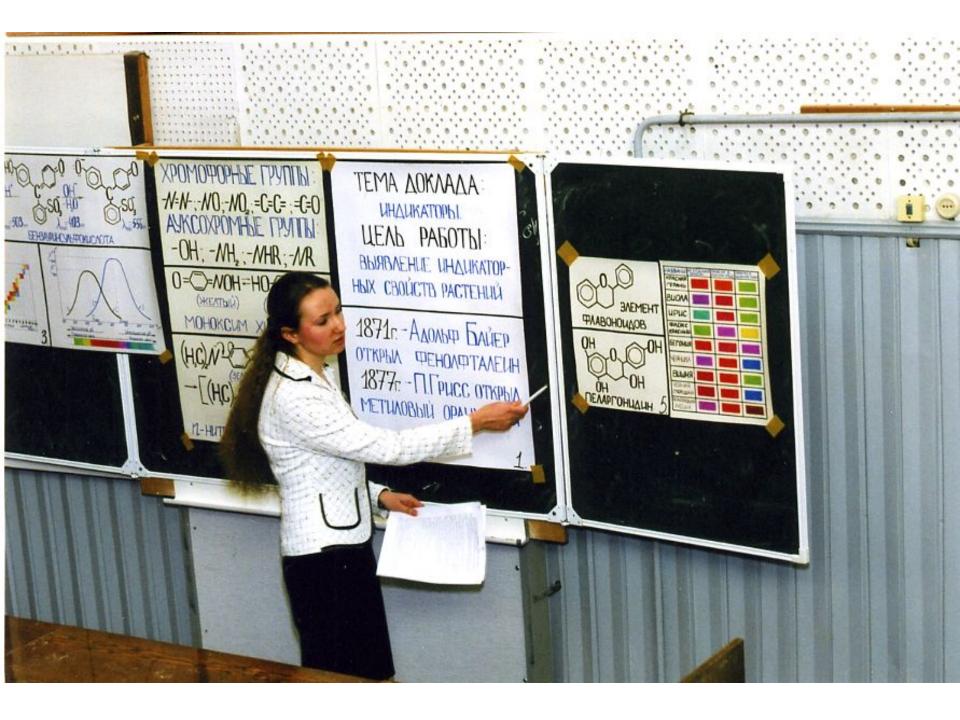
Глюкоза – пятиатомный альдегидоспирт

BMECTO 311/10/CA

Цель:

помощь в профориентации, готовность к адаптации, постоянному самообразованию.

Что способствует реализации этой цели?


- Формирование значимых мотивов обучения
- «... Ученому необходимо сначала вдохновение, а потом терпение».

Вант-Гофф

- Поиск путей формирования творческого мышления
- Взаимоотношения между учениками и учителями, где все участники учатся

CITACIDO 3A BHIMAHIE!

PETRO PAIMO
CATHARINA GEUNDA
MDCCLXXXII