Окислительновосстановительные реакции

Цель урока:

Закрепление, обобщение и углубление знаний об окислительновосстановительных реакциях, расстановка коэффициентов методом электронного баланса

Опорные понятия

- Процесс восстановления процесс принятия электронов частицей (атомом, молекулой, ионом). При восстановлении степень окисления элемента понижается.
- Процесс окисления процесс отдачи электронов данной частицей (атомом, молекулой, ионом). При окислении степень окисления элемента повышается.
- Восстановители частицы (атомы, молекулы или ионы), отдающие электроны.
- **Восстановители** доноры электронов (от лат. donare дарить).
- **Окислители** частицы (атомы, молекулы или ионы), принимающие электроны.
- Окислители акцепторы электронов (от лат. ассерtor – получатель).

Процесс окисления

Повышение степени окисления

Понижение степени окисления

Процесс восстановления

Правила определения функции соединения в окислительновосстановительных реакциях

- 1. Если элемент проявляет в соединении высшую степень окисления, то это соединение может быть окислителем.
- 2. Если элемент проявляет в соединении низшую степень окисления, то это соединение может быть восстановителем.
- 3. Если элемент проявляет в соединении промежуточную степень окисления, то это соединение может быть как окислителем, так и восстановителем.

Задание.

Предскажите функции веществ в окислительно-восстановительных реакциях: $H_2SO_{4(конц)}$, SO_2 , S, H_2S

Ответ

- H₂SO_{4(конц)} окислитель, так как элемент сера проявляет в данном соединении высшую степень окисления (+6).
- H₂S восстановитель, так как элемент сера проявляет в данном соединении низшую степень окисления (-2).
- SO₂, S окислитель или восстановитель (в зависимости от сореагентов), так как элемент сера проявляет в данных соединениях промежуточную степень окисления.

Нами предсказаны функции веществ по сере. Если же рассматривать оба элемента, входящие в состав вещества, например, в случае H_2S , то наряду с восстановительными свойствами соединение обладает и окислительными свойствами по элементу водороду, имеющему степень окисления +1.

$$H_2S + Zn = ZnS + H_2$$

Важнейшие окислители

- 1. Простые вещества-неметаллы с наибольшими значениями электроотрицательности – F₂, O₂;
- 2. Сложные вещества, молекулы которых содержат элементы в высшей степени окисления $KMnO_4$, $K_2Cr_2O_7$, HNO_3 , нитраты, $H_2SO_{4(конц)}$, PbO_2 , $HClO_4$, перхлораты
- 3. Среди веществ, содержащих элементы в промежуточных степенях окисления, более характерны окислительные свойства для Cl₂, Br₂, HClO, KClO₃, MnO₂, соли трехвалентного железа (FeCl₃).


Важнейшие восстановители

- 1. Все простые вещества-металлы. Наиболее активными восстановителями являются щелочные и щелочно-земельные металлы, Mg, Al, Zn.
- 2. Сложные вещества, молекулы которых одержат элементы в низшей степени окисления <u>C</u>H₄, <u>Si</u>H₄, <u>N</u>H₃, <u>P</u>H₃, нитриды и фосфиды металлов (например NaN₃, Ca₃P₂), H₂S, сульфиды металлов, HI, HBr, HCI, галогениды металлов, гидриды металлов (например, NaH, CaH₂.
- 3. Среди веществ, содержащих элементы в промежуточных степенях окисления, более характерны восстановительные свойства для С, СО, сульфитов металлов (Na₂SO₃), соли двухвалентного железа (<u>Fe</u>SO₄).

Задания

- В каких из указанных ниже веществ марганец может проявлять только восстановительные свойства или только окислительные, или те и другие: KMnO₄, MnO₂, Mn₂O₇, Mn0, K₂MnO₄, MnO?
- В каких из перечисленных ниже веществ хром может проявлять только восстановительные свойства, только окислительные или те и другие: Cr₂(SO₄)₃, CrO₃, K₂CrO₄, Cr, CrCl₂, K₂Cr₂O₇?
- Укажите, в каких из приведенных ниже веществ сера может проявлять только восстановительные свойства, только окислительные, те и другие: S, H₂S, H₂SO₃, SO₃, FeS, SO₂, H₂SO₄, Na₂S₂O₃.

Окислительно-восстановительные реакции (OBP) – химические реакции, при протекании которых степени окисления элементов изменяются.

Межмолекулярные (ОВР)

В этих реакциях элемент-окислитель и элемент-восстановитель входят в состав молекул различных веществ

Внутримолекулярные (ОВР)

В этих реакциях элемент-окислитель и элемент-восстановитель входят в состав одного вещества.

$${}^{-3}_{(NH_4)_2} {}^{+6}_{Cr_2} {}^{O}_7 \rightarrow {}^{N}_2 + {}^{C}_{r_2} {}^{O}_3 + {}^{H}_2 {}^{O}$$

Самоокисления- самовосстановления (диспропорционирования) (OBP)

Это ОВР, при протекании которых один и тот же элемент, находится в промежуточной степени окисления, и окисляется и восстанавливается. Часть атомов данного элемента отдает электроны другой части атомов этого же элемента.

$$^{+4}NO_2 + H_2O \rightarrow ^{+3}HNO_2 + ^{+5}HNO_3$$
 $Cl_2^0 + Ca(OH)_2 \rightarrow CaCl_2^{-1} + Ca(ClO)_2 + H_2O$

Составление ОВР методом электронного баланса

В основе данного метода лежит следующее правило: общее число электронов, которое отдает восстановитель, должно быть равно общему числу электронов, которое присоединяет окислитель.

Рассмотрим применение метода электронного баланса на примере реакции, которая выражается следующей схемой:

 $\overline{\text{KMnO}_4 + \text{KBr} + \text{H}_2\text{SO}_4 \rightarrow \text{MnSO}_4 + \text{Br}_2 + \text{K}_2\text{SO}_4 + \text{H}_2\text{O}_4}$

Алгоритм

1. Определим степени окисления всех элементов в молекулах исходных веществ и продуктов реакции:

$$+1 +7 -2 +1 -1 +1 +6 -2 +2 +6 -2 0 +1 +6 -2 +1 -2$$
 $KMnO_4 + KBr + H_2SO_4 \rightarrow MnSO_4 + Br_2 + K_2SO_4 + H_2O$

2. Подчеркнем символы элементов, которые изменяют степени окисления в ход реакции:

$$+7$$
 -1 $+2$ 0 $K\underline{Mn}O_4 + K\underline{Br} + H_2SO_4 \rightarrow \underline{Mn}SO_4 + \underline{Br}_2 + K_2SO_4 + H_2O$

3. Составим уравнения процессов окисления и восстановления:

$$^{+7}$$
Mn + 5ē \rightarrow $^{+2}$ Mn (восстановление)

$${}^{-1}_{2}$$
Br - $2\bar{e} \rightarrow {}^{0}_{2}$ (окисление)

4. Находим множители для уравнений процессов окисления и восстановления, при умножении на которые числа отданных и присоединенных электронов будут равны. Так как наименьшим общим кратным чисел «5» и «2» является «10», то уравнение процесса восстановления нужно умножить на «2», а уравнение процесса окисления - на «5»

$$\stackrel{+7}{\text{Mn}}$$
 + 5ē \rightarrow $\stackrel{+2}{\text{Mn}}$ 2_I

$${}^{-1}_{2}$$
Br - $2\bar{e} \rightarrow {}^{0}_{2}$ Br ₂ 5

5. Найденные множители запишем как коэффициенты перед формулами веществ, которые содержат элементы, участвующие в процессах окисления и восстановления:

 $2KMnO_4 + 10KBr + H_2SO_4 \rightarrow 2MnSO_4 + 5Br_2 + K_2SO_4 + H_2O_4$

6. После этого уравняем числа атомов элементов, которые не изменяют степени окисления. В данном случае это атомы калия, серы, водорода и кислорода.

 $2KMnO_4 + 10KBr + 8H_2SO_4 \rightarrow 2MnSO_4 + 5Br_2 + 6K_2SO_4 + 8H_2O_4$

Обычно числа атомов водорода и кислорода уравнивают в последнюю очередь. Во многих случаях равенство чисел атомов кислорода в левой и правой частях уравнения ОВР свидетельствует о том, что это уравнение составлено правильно.

Выполните задания

- 1. В каких из приведенных уравнений реакций соединения железа является окислителями, в каких восстановителями, расставьте коэффициенты методом электронного баланса:
- A) $Fe_2O_3 + AI = Fe + AI_2O_3$
- B) $Fe_2O_3 + KNO_3 + KOH = K_2FeO_4 + KNO_2 + H_2O$
- C) FeSO₄ + Mg = MgSO₄ + Fe
- D) $FeSO_4 + KMnO_4 + H_2SO_4 = Fe_2(SO_4)_3 + MnSO_4 + K_2SO_4 + H_2O$
- E) $Fe(OH)_2 + O_2 + H_2O = Fe(OH)_3$

- 2. Определите типы окислительно-восстановительных реакций, расставьте коэффициенты методом электронного баланса:
- $H_2S + HNO_3 = H_2SO_4 + NO_2 + H_2O$
- H₂S + H₂SO₃ = S + H₂O
- Pb(NO₃)₂ = PbO + NO₂ + O₂
- NaNO₃ = NaNO₂ + O₂
- $NH_1NO_2 = N_2 + H_2O_3$
- $HN\ddot{O}_2 = HN\dot{O}_3 + \dot{N}O + H_2O$
- 3. В схемах реакций растворения металлов в азотной кислоте подберите коэффициенты методом электронного баланса:
- Ag + $HNO_3 \rightarrow AgNO_3 + NO_2 + H_2O$
- $Cu + HNO_3 \rightarrow Cu(NO_3)_2 + NO + H_2O_3$
- Ca + HNO $_3$ \rightarrow Ca(NO $_3$) $_2$ + N₂O + H₂O
- Mg + HNO₃ \rightarrow Mg(NO₃)₂ + N₂ + H₂Ō
- Mg + HNO₃ \rightarrow Mg(NO₃)₂ + NH₄NO₃ + H₂O
- Fe + HNO₃ \rightarrow Fe(NO₃)₃ + NO₂ +H₂O

Домашнее задание

А.С. Егоров Репетитор по химии. Ростов-на-Дону: Феникс, 2004г. параграф 4,1. с.149-157, упражнение 4,5 с.158