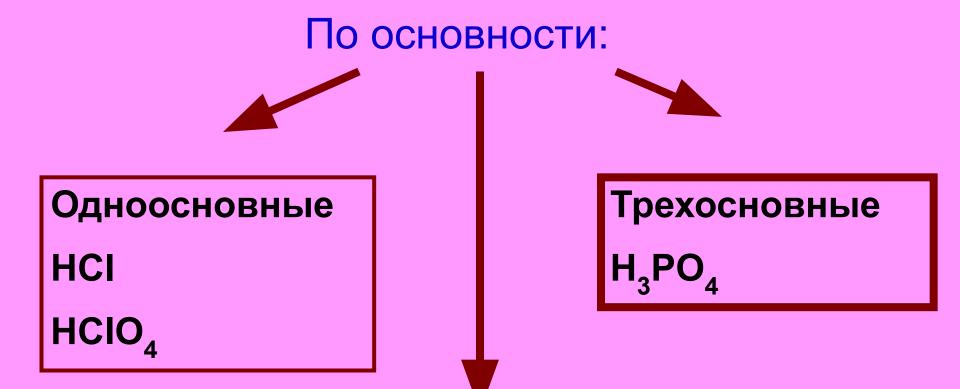
Тема урока:

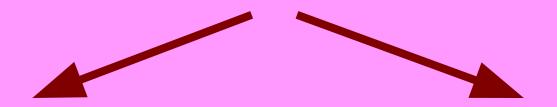
«Классификация и свойства кислот»

Кислоты – это сложные неорганические соединения, состоящие из протона водорода и киспотного остатка

Сложные вещества


Классификация кислот.

По основности:



Двухосновные H₂S H₂SO₄

По содержанию кислорода:

По содержанию кислорода:

Кислородсодержащие

HCIO₄

H₂SO₄

Бескислородные

HCI

H₂S

По силе:

Сила кислот уменьшается

По силе:

Сила кислот уменьшается

```
HCIO_4, H_2SO_4, HCI, H_2SO_3, H_2CO_3, H_2S, H_2SIO_3

HNO_3

H_3PO_4
```

По стабильности:

По стабильности:

Стабильные

Нестабильные

H₂CO₃ H₂SiO₃

По растворимости:

По растворимости:

H₂SO₄

HCI

HNO₃

Нерастворимые

H₂SiO₃

Правила техники безопасности при работе с кислотами

- 1. При разбавлении кислот водой следует кислоту тонкой струйкой при перемешивании наливать в воду, а не наоборот.
- 2. Если случайно кислота попадет на руку или на одежду, то немедленно смойте ее большим количеством воды, а потом обработайте место раствором гидрокарбоната натрия (соды).

Химические свойства кислот:

1. Меняют цвет индикаторам

индикатор	Изменение цвета в кислой среде
метилоранж	малиновый
фенолфталеин	Не изменился
лакмус	красный

2. Кислота + Металл \rightarrow соль + H_2

Три условия:

- кислота растворимая (кроме HNO₃)
- Ме стоит в ряду активности до водорода
- Получается растворимая соль
- 1) Cu + HCl —> не идет
- 2) $Zn + 2 HCI ZnCl_2 + H_2 \uparrow$
- 3) Na + H_3PO_4 —>
- 4) Ca + H_2SO_4 —>

3. Кислота + основной оксид → соль + H₂O

Условия:

- Все кислоты кроме нестабильных (H_2CO_3, H_2SiO_3)
- Образуется растворимая соль

3) HCI + CuO ->

4. Кислота + амфотерный оксид → соль + H₂O

Условия:

- Все кислоты кроме нестабильных (H_2CO_3, H_2SiO_3)
- Образуется растворимая соль

- 1) 6 HCI + AI₂O₃ -> 2 AICI₃ + 3 H₂O
- 2) HNO₃ + ZnO —>
- 3) HCI + BeO ->

5. Кислота + основание \rightarrow соль + H_2O (реакция нейтрализации)

- 1) $H_2SO_4 + 2 KOH K_2SO_4 + 2 H_2O$
- 2) HCI + AI(OH)₃ -->
- 3) $HNO_3 + Zn(OH)_2 ->$

6. Кислота + соль → соль* + кислота*

Должно выполняться одно из двух условий:

- Один из продуктов реакции летучее вещество (газ)
- Один из продуктов реакции выпадает в осадок
- 1) 2 HCI + CaCO₃ -> CaCI₂ + H₂O + CO₂ \uparrow
- 2) $H_2SO_4 + BaCI_2 \longrightarrow BaSO_4 \downarrow + 2 HCI$
- 3) $HCI + AgNO_3 \longrightarrow$

7. При нагревании некоторые кислоты разлагаются. Как правило, образуются кислотный оксид и вода.

1)
$$H_2SiO_3 \longrightarrow H_2O + SiO_2$$
T, CBET

2) $4 \text{ HNO}_3 \longrightarrow 2 H_2O + 4 \text{ NO}_2 \uparrow + O_2 \uparrow$

Способы получения кислот:

- 1. Кислотный оксид + $H_2O \rightarrow$ кислота $SO_3 + H_2O \rightarrow H_2SO_4$
- 2. Водород + HeMe \rightarrow кислота $H_2 + Cl_2 \rightarrow 2$ HCI
- 3. Кислота + соль \rightarrow соль* + кислота* t 2 NaCl + H₂SO₄ \rightarrow Na₂SO₄ + 2 HCl↑

Домашнее задание

- § 38 читать
- Урок учить
- Стр. 148 ?: 9,10,11