Альдегиды

Аль-де-гид Алкоголь дегидрированный

Спирт, лишённый водорода:

$$H$$
 R — C — O — H
 t , kat
 H
 $CПИРТ$
 $AЛЬДЕГИД$

Альдегиды - органические вещества, молекулы которых содержат карбонильную группу (-С (), соединенную с углеводородным радикалом и атомом водорода.

Получение альдегидов

При дегидрировании спиртов:

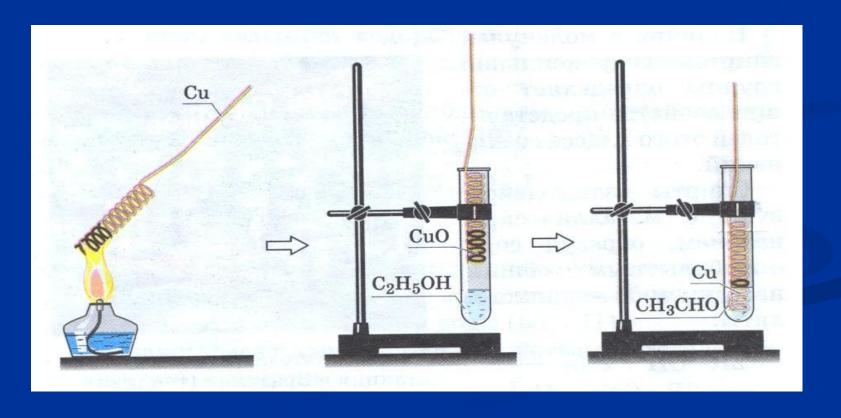
a)
$$CH_3$$
-OH $\xrightarrow{t, kat}$ H -C $+ H_2$

H

METAHAAB

6) CH_3 -CH₂-OH $\xrightarrow{t, kat}$ CH_3 -C $+ H_2$

H


9TAHAAB

Альдегиды образуются при окислении **первичных** спиртов

Получение альдегидов

Окисление спирта над медным катализатором:

$$\underline{\Theta_{\text{Танол}}} + \text{CuO} \xrightarrow{t} \underline{\text{этаналь}} + \text{Cu} + \text{H}_2\text{O}$$

Получение альдегидов

Окисление спирта перманганатом калия:

Спирт + [O]
$$\rightarrow$$
 альдегид + H_2O

В нашем организме окисление спирта происходит в печени.

При окислении вторичных спиртов образуются кетоны

$$CH_3$$
- CH - CH_3 + $[O]$ \rightarrow CH_3 - C - CH_3 + H_2O
 OH

пропанол-2

пропанон-2 (ацетон)

Запомните: альдегиды и кетоны содержат карбонильную группу объединяют в группу кароонильных соединений.

Номенклатура альдегидов

НСОН – метаналь;

муравьиный альдегид;

формальдегид;

водный раствор в воде – формалин.

СН₃СОН – этаналь;

уксусный альдегид;

ацетальдегид*

*Этаналь может быть получен из ацетилена

(реакция Кучерова):
$$HC \equiv CH + H_2O \xrightarrow{H_2SO_4} CH_3 - C/$$

Изомерия альдегидов

углеродного скелета

$$CH_3-CH_2-CH_2-C_H^{0}$$
 $CH_3-CH-C_H^{0}$ $CH_3-CH-C_H^{0}$ CH_3 2-метилпропаналь

классов соединений

Физические свойства альдегидов

- Первый представитель класса метаналь при комнатной температуре является газом (с характерным запахом).
- Низкие температуры кипения альдегидов (по сравнению со спиртами) объясняются ОТСУТСТВИЕМ водородных связей между молекулами альдегидов.

Физические свойства альдегидов

Молекула альдегидов содержит полярную альдегидную группу:

$$\mathbf{H} - \mathbf{C} - \mathbf{C}^{\delta + 1/2} \mathbf{O}^{\delta - 1}$$

$$\mathbf{H} - \mathbf{H}$$

Благодаря чему первые представители гомологического ряда альдегидов хорошо растворяются в воде.

Химические свойства альдегидов (реакции окисления)

Окисление альдегидов аммиачным раствором оксида серебра:

Формальдегид
$$+ Ag_2O_{t}$$
 муравьиная $+ 2Ag↓$ (аммиач.р-р) кислота

Ацетальдегид
$$+ Ag_2O_{(aммиач.p-p)}$$
 t уксусная $+ 2Ag\downarrow$ кислота

Это реакция «серебряного зеркала»

Химические свойства альдегидов (реакции окисления)

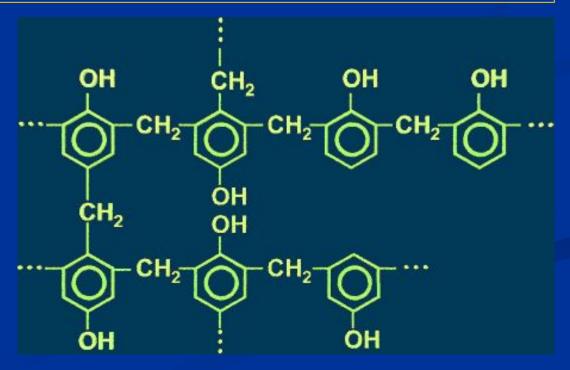
Взаимодействие с гидроксидом меди (II) при нагревании:

$$\underbrace{Memahasi}_{b} + 2Cu(OH)_{2} \underbrace{t}_{b} \underbrace{Memahobas}_{b} + Cu_{2}O + 2H_{2}O$$
 кислота

$$\underbrace{\mathcal{P}mаналь}_{\mathcal{E}} + 2\mathrm{Cu(OH)}_{2} \xrightarrow{t} \underbrace{\mathsf{2}maновая}_{\mathcal{E}UCЛота} + \mathrm{Cu}_{2}\mathrm{O} + 2\mathrm{H}_{2}\mathrm{O}$$

Химические свойства альдегидов (реакции восстановления)

Гидрирование альдегидов с образованием спиртов:


Метаналь
$$+ H_2 \xrightarrow{t, kat}$$
 метанол

Этаналь
$$+ H_2 \xrightarrow{t, kat}$$
 этанол

Химические свойства альдегидов

(реакция поликонденсации)

Из фенола и формальдегида образуется фенолформаль дегидная смола:

Применение альдегидов

Знаете ли вы, что...

- Формальдегид содержится в древесном дыме. Он обеспечивает консервирующее действие (за счёт уничтожения бактерий) в ходе копчения пищевых продуктов.
- Бактерицидное действие формальдегида основано на его взаимодействии с белками, что лишает белки возможности выполнять свои функции. Формальдегид может образоваться в нашем организме из метанола под действием особого фермента, участвующего в химии зрения. Поэтому принятие даже 2 г метанола приводит к слепоте!

Знаете ли вы, что...

- м Ацетальдегид образуется при созревании фруктов и вносит свой вклад в их запах.
- Ацетальдегид образуется таже дрожжами Sacchromyces cerevisiae. Этим дрожжам позволяют расти на сухом хересе, которому они придают специфический ореховый привкус.

Запомните

- Для альдегидов (в отличие от спиртов) не характерна изомерия положения функциональной группы.
- **При окислении** альдегидов образуются карбоновые кислоты.
- При восстановлении альдегидов образуются спирты.
- Качественными реакциями на альдегидную группу являются: а) «реакция серебряного заркала»;
 б) взаимодействие с гидроксидом меди (II) при нагревании с образованием красного осадка.

Теперь вы знаете

- Какие вещества относят к альдегидам;
- Номенклатуру и изомерию альдегидов;
- Физические и химические свойства альдегидов;
- Качественные реакции на альдегиды;
- Получение альдегидов;
- Применение альдегидов (на примере формальдегида и ацетальдегида).