Лекция № 14

Химия неметаллов. Общая характеристика.

продолжение

Кислородные соединения галогенов

Cl₂O₇

$$Cl_2O + H_2O \rightarrow HClO (HOCl)$$
 хлорноватистая

IV III V
$$ClO_2 + H_2O \rightarrow \frac{HClO_2}{HClO_2} + HClO_3$$
VI V VII
 $ClO_3 + H_2O \rightarrow \frac{HClO_3}{XЛОРНОВАТАЯ} + HClO_4$

 $Cl_2O_7 + H_2O \rightarrow HClO_4$

гипохлориты

хлориты

хлораты

перхлораты

Окислительные свойства

I

HClO

Ш

HClO₂

HClO₃

VII

HClO₄

 $HClO + Zn = HCl + Zn(ClO)_2 + H_2O$

 $HClO_3 + Cu = HCl + Cu(ClO_3)_2 + H_2O$

 $HClO_4 + Zn = HCl + Zn(ClO_4)_2 + H_2O$ C > 70 %

 $2HClO_4 + Zn = H_2 + Zn(ClO_4)_2$

Соли кислородсодержащих кислот

Гипохлориты

NaClO - гипохлорит натрия

$$Cl_2 + NaOH$$
 \rightarrow NaClO + NaCl + H₂O жавелева вода NaClO + $CO_2 + H_2O$ \rightarrow HClO + NaHCO₃ HCl O

$$2Cl_2 + 2Ca(OH)_2 = CaCl_2 + Ca(ClO)_2 + 2H_2O$$
 хлорная известь

$$Ca(ClO)_2 + CO_2 + H_2O \rightarrow HClO + CaCO_3$$
 $\not\vdash$
 $HCl O$

 $FeCl_3 + NaClO + NaOH \rightarrow Na_2FeO_4 + NaCl + H_2O$

Хлораты

КСІО₃ - бертолетова соль

$$KClO_3 \rightarrow KClO_4 + KCl \quad (t = 400^{\circ}C)$$

$$KClO_3 \xrightarrow{KaT} KCl + O_2 \quad (t = 250^{\circ} C)$$

$$KClO_3 + C_{12}H_{22}O_{11} \xrightarrow{KaT} KCl + CO_2 + H_2O$$

$$\underset{caxap}{\overset{KaT}{\longrightarrow}} KCl + CO_2 + H_2O$$

Перхлораты

$$KClO_4 \xrightarrow{t, \kappa a T a \pi} KCl + O_2$$

Кислородсодержащие кислоты брома и йода

НВгО₃ Бромноватая кислота - броматы НІО₃ Йодноватая кислота - йодаты

$$KIO_3 + 3Na_2SO_3 \rightarrow KI + 3Na_2SO_4$$

$$KIO_3 + 5KI + 6HCl \rightarrow 3I_2 + 6KCl + 3H_2O$$

Кислородные соединения халькогенов

$$SO_2 + nH_2O \Leftrightarrow SO_2 \cdot nH_2O \quad (n=1 \Rightarrow SO_2 \cdot H_2O \equiv \langle H_2SO_3 \rangle)$$

$$SO_2 \cdot H_2O \Leftrightarrow H^+ + HSO_3^-$$

$$K_I \sim 10^{-2}$$

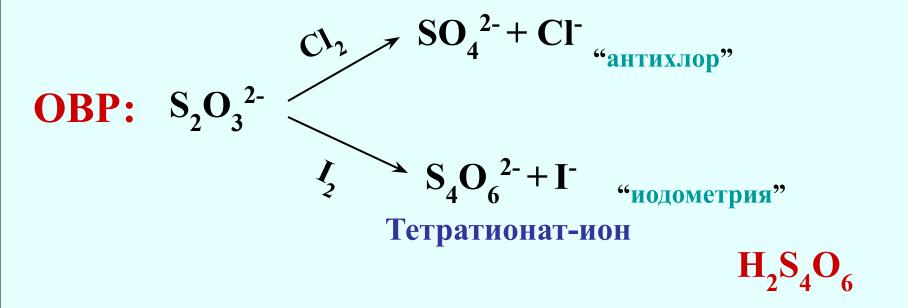
$$HSO_3^- \Leftrightarrow H^+ + SO_3^{2-}$$

$$K_{II} \sim 10^{-8}$$

$$SO_3^{2-} + H_2O \Leftrightarrow HSO_3^{-} + OH^{-}$$

$$SO_2 + Br_2 + H_2O \rightarrow H_2SO_4 + HBr$$

$$Na_2SO_3 + O_2 = Na_2SO_4$$


$$SO_2 + H_2S \rightarrow S + H_2O$$

$$Na_2SO_3 \rightarrow Na_2SO_4 + Na_2S$$

Тиосульфат натрия (или гипосульфит)

Реакции сульфитов с серой:

$$Na_2SO_3 + S = Na_2S_2O_3$$
 Na-O O Na-O S $H_2S_2O_3 \rightarrow S \mid + SO_2^{\uparrow} + H_2O$ Na-O S

оксиды

SO₃ твердое в-во, при t > 17 °C - бесцветная ж-ть

SeO₃

бел., тв.

TeO₃

желт., тв.

кислоты

H₂SO₄

H₂SeO₄ бел., тв.

 $H_{\underline{6}} \text{TeO}_{6} (H_{\underline{2}} \text{TeO}_{4})$

бесцв. ж-ть

оел., тв.

бел., тв.

ж-сть

Сильные кислоты

Сульфаты

Селенаты

Теллураты

Кислотные свойства

Окислительная активность

$$SO_3 + H_2O = H_2SO_4$$
 $\Delta H < 0$
 $H_2SO_4 \cdot nSO_3 - олеум$

98,3 % p-p H₂SO₄: $\rho = 1,84$ г/см³, t.кип. 338 °C, t.затв. 10,4 °C

1.
$$C_{12}H_{22}O_{11 \text{ (TB.)}} \xrightarrow{H_2SO_{4(\text{конц})}} 12C_{\text{(TB.)}}$$

- 2. NaHSO₄ и Na₂SO₄
- 3. **H₂SO_{4(pa36)}**

$$H_2SO_{4(pa36)} + Fe \rightarrow FeSO_4 + H_2$$
 $H_2SO_{4(pa36)} + Cu \rightarrow$

4. $\mathbf{H_2SO}_{4(\mathrm{конц})} + \mathbf{Mg} \rightarrow \mathbf{MgSO}_4 + \mathbf{H_2S} \uparrow + \mathbf{H_2O}$ $\mathbf{H_2SO}_{4(\mathrm{конц})} + \mathbf{Cu} \rightarrow \mathbf{CuSO}_4 + \mathbf{SO}_2 \uparrow + \mathbf{H_2O}$

Соли серной кислоты

Соли – сульфаты и гидросульфаты.

BaSO₄, SrSO₄, PbSO₄

видио №11

Имеют наибольшее практическое значение:

$$CuSO_4 \cdot 5H_2O$$
 - медный купорос

 $FeSO_4 \cdot 7H_2O$ - железный купорос

ZnSO₄ · 7H,О - цинковый купорос

- фотография

- медицина

- крашение тканей

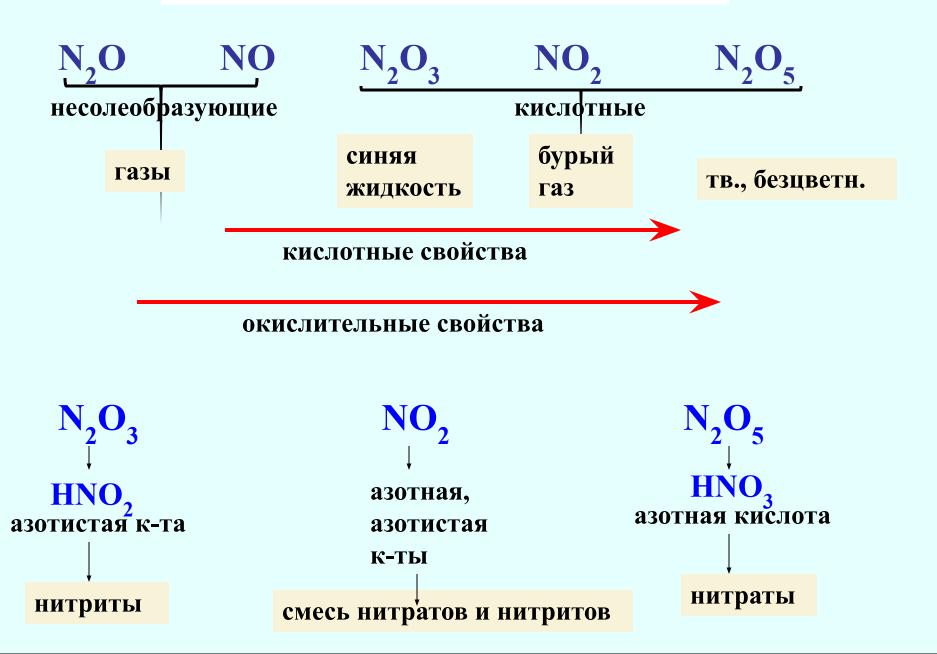
$$M^{I}M^{III}(SO_4)_2 \cdot nH_2O$$
 - квасцы

$$KAl(SO_4)_2 \cdot 12H_2O$$
 - алюмокалиевые квасцы $KCr(SO_4)_2 \cdot 12H_2O$ - хромокалиевые квасцы

- медицина

- производство бумаги

Пиросерная (двусерная) кислота и ее соли

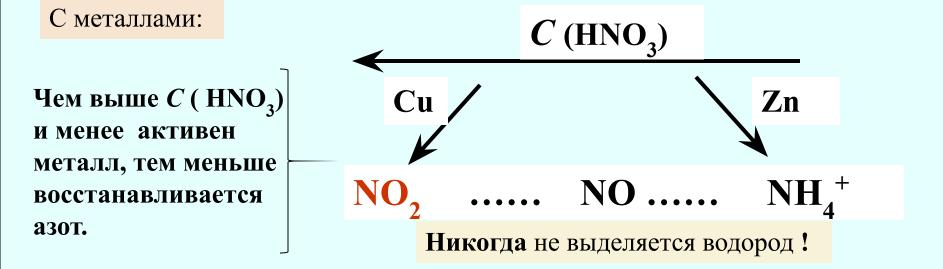

$$H_2SO_4 \cdot nSO_3 - SO_3 + H_2SO_4 \Leftrightarrow H_2S_2O_7$$

олеум $\xrightarrow{>35^{\circ}C} K_2SO_4 + SO_3$ ($H_2SO_4 \cdot SO_3$)
 $2KHSO_4 \xrightarrow{\pi_0 \ 240^{\circ}C} K_2S_2O_7 + H_2SO_4$

Пероксодисерная кислота и ее соли

$$2H_2SO_4 \xrightarrow{9$$
лектролиз $H_2S_2O_8 + H_2$ $H_2SO_4 \rightarrow H^+ + HSO_4^-$

$$egin{align*} \mathbf{K_2S_2O_8} + \mathbf{KI} &= \mathbf{K_2SO_4} + \mathbf{I_2} \\ \mathbf{S_2O_8}^- + 2\mathbf{e} &= 2\mathbf{SO_4}^{2-} & \text{полуреакция для окислителя} \\ 2\mathbf{I}^- - 2\mathbf{e} &= \mathbf{I_2} & \text{полуреакция для восстановителя} \\ \end{aligned}$$


Кислородные соединения азота

 HNO_3 – бесцвет. жидк., 98-100 %, $\rho = 1.5 \text{ г/см}^3$, $t_{\text{кип}} = 86 \text{ °C}$.

$$\text{HNO}_3 \stackrel{hv}{\xrightarrow{t}} \text{NO}_2 \uparrow + \text{H}_2\text{O} + \text{O}_2 \uparrow$$

HNO₃ - сильная кислота, в OBP -сильный окислитель

HNO₃ (конц.) пассивирует Fe, Al, Cr, V, Bi, ...(на холоду) **HNO**₃ не p-ряет Au, Pt, Ru, Ir, Os, Ta, W...

Царская водка: $HNO_3 + HCl = 1:3$ Р-ряет Au, Pt

$$Au + HNO_3 + HCl \rightarrow H[AuCl_4] + NO + H_2O$$

$$HNO_3 + S \rightarrow H_2SO_4 + NO$$

$$HNO_3 + P + H_2O \rightarrow H_3PO_4 + NO$$

Нитраты:

При нагревании разлагаются с выделение кислорода (O_2)

Эл.-хим. ряд напряжений Меt.

$$NaNO_3 \rightarrow NaNO_2 + O_2 \uparrow$$

$$Pb(NO_3)_2 \rightarrow PbO + NO_2 \uparrow + O_2 \uparrow$$

$$AgNO_3 \rightarrow Ag + NO_2 \uparrow + O_2 \uparrow$$

Нитраты натрия, калия, аммония, кальция - селитры

$$Fe_2O_3 + KNO_3 + KOH \rightarrow K_2FeO_4 + KNO_2 + H_2O$$

HNO, - азотистая кислота

$$N_2O_3 + H_2O \rightarrow HNO_2$$

нестойкая, слабая к-та, сущ-ет в водном p-pe при низких тем-рах

Разлагается:

$$HNO_2 \rightarrow HNO_3 + NO\uparrow + H_2O$$

$$N_2O_3 \stackrel{t=3,5}{\longrightarrow} NO + NO_2$$

Нитриты

Хорошо растворимы в воде (кроме AgNO₂), ядовиты

В ОВР – двойственная природа: $NaNO_2 + NaClO_3 \rightarrow NaNO_3 + NaCl$ восстановитель

$$NaNO_2 + NaI + H_2SO_4 \rightarrow NO + I_2 + Na_2SO_4 + H_2O$$

окислитель

Реакции диспропорционирования:

$$3HNO_2 \rightarrow HNO_3 + 2NO + H_2O$$

Термическое разложение нитритов:

- щелочных металлов:
$$LiNO_2 \stackrel{t}{\rightarrow} Li_2O + NO + O_2$$

- других металлов:
$$Cd(NO_2)_2 \xrightarrow{t} CdO + NO + NO_2$$

- благородных металлов: $AgNO_2 \xrightarrow{t} Ag + NO_2$

- аммония:
$$NH_4NO_2 \xrightarrow{t} N_2 + H_2O$$

Нитриты натрия, калия находят применение в пищевой промышленности, в производстве красителей, в фотографии