МБОУ « Дрезненская средняя общеобразовательная школа №1»

Презентация к уроку химии по теме «Гидролиз неорганических веществ

- солей».

11 класс. УМК Габриеляна О.С. Базовый уровень

Коцкая Елена Ивановна, учитель химии

Тест по теме: « Теория электролитической диссоциации».

Ответы:

1	2	3	4	5	6	7	8	9
4	1	3	1	1	2	3	3	3

Гидролиз солей

Сущность гидролиза сводится к обменному химическому взаимодействию катионов или анионов соли с молекулами воды. В результате образуется слабый электролит.

Любая соль — это продукт взаимодействия основания с кислотой. В зависимости от силы основания и кислоты выделяют 4 типа солей.

Гидролизу не подвергается нерастворимые соли и соли, образованные сильным основанием (щёлочи) и сильной кислотой (HCl, HClO4, HNO3, H2SO4), среда раствора нейтральная, pH=7.

Гидролизу подвергается:

- 1) соль, образованная сильным основанием и слабой кислотой (HClO, HNO2, H2S, H2SiO3, H2CO3 включая органические кислоты), гидролиз по аниону, среда щелочная, pH>7.
- 2) соль, образованная слабым основанием (NH3·H2O, органические амины, нерастворимые гидроксиды металлов) и сильной кислотой, гидролиз по катиону, среда раствора кислая, pH<7.
- 3) соль, образованная слабым основанием и слабой кислотой, гидролиз по катиону и аниону. Реакция среды определяется сравнением Кд слабых электролитов. Среда определяется большим значением Кд, но близка к нейтральной.

Лабораторная работа «Определение реакции среды растворов солей универсальным индикатором».

Формула соли	Изменение окраски лакмусовой бумаги (цвет)	Значение рН	Реакция среды
AlCl ₃	Розовый цвет	pH<7.	Среда кислая
Na ₂ CO ₃	Яркий синий цвет	pH>7	Среда щелочная
NaCl	Лакмусовая бумага не меняет окраску (гидролиза нет)	pH=7	Среда нейтральная

Алгоритм составления гидролиза солей Дана соль **AlCl₃ – образована слабым основанием и сильной кислотой.**

1. Составить уравнение диссоциации соли, определить ион слабого электролита.

$$AlCl_3 \leftrightarrow Al^{3+} + 3Cl^{-}$$

 Al^{3+} - катион алюминия, слабое основание, гидролиз по катиону

2. Составить уравнение его взаимодействия с водой, определить продукты гидролиза в виде ионов.

$$Al^{3+}+H^+OH^- \longleftrightarrow (AlOH)^{2+}+H^+$$

- 3. Сделать вывод о среде электролита. среда кислая, т.к. $[H^+] > [OH^-]$
- 4. Составить уравнение в молекулярном и ионном виде.

$$AlCl_3+HOH \leftrightarrow (AlOH)^{2+}Cl^2+HCl$$

$$Al^{3+}+3Cl^{-}+HOH \leftrightarrow (AlOH)^{2+}+3Cl^{-}+H^{+}$$

$$Al^{3+}+HOH \leftrightarrow (AlOH)^{2+}+H^{+}$$

Гидролиз соли Na₂CO₃, образованной сильным основанием и слабой кислотой.

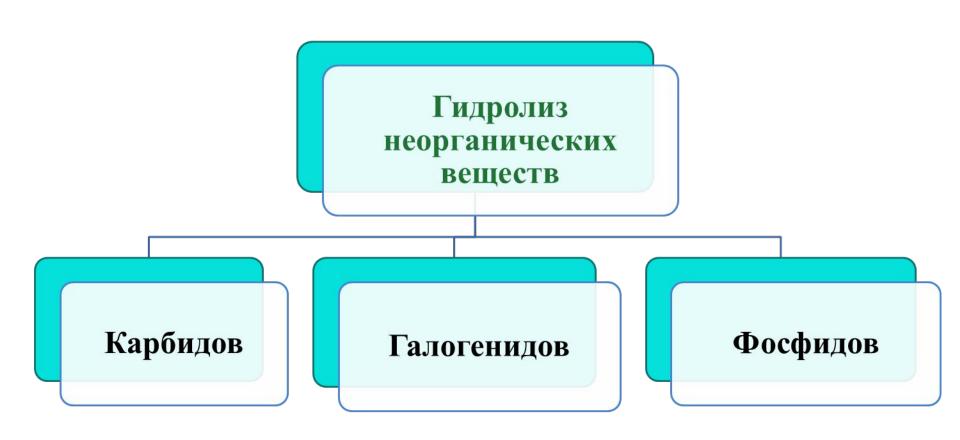
$$Na_{2}CO_{3} \leftrightarrow 2Na^{+}+CO_{3}^{-}$$

 CO_{3}^{-} – карбонат - анион, слабая кислота, гидролиз по аниону.
 $CO_{3}^{-}+HOH \leftrightarrow HCO_{3}^{-}+OH_{-}$ среда щелочная, т.к. $[OH_{-}] > [H_{+}]$
 $Na_{2}CO_{3}+HOH \leftrightarrow NaHCO_{3}+NaOH$
 $2Na_{3}^{+}+CO_{3}^{-}+H_{-}^{+}OH_{-}^{-} \leftrightarrow HCO_{3}^{-}+2Na+OH_{-}^{-}$
 $CO_{3}^{-}+HOH \leftrightarrow HCO_{3}^{-}+OH_{-}^{-}$

Гидролиз соли СН, СООNН₄, образованной слабым основанием и слабой кислотой

В случае гидролиз соли, образованной слабым основанием и слабой кислотой, образуются конечные продукты – слабое основание и слабая кислота – малодиссоциирующие вещества. Гидролиз необратимый.

$$CH_3 COONH_4 + HOH = CH_3COOH + NH_4OH$$


Среда определяется сравнением $K_{_{\!\scriptscriptstyle T}}$ слабых электролитов, а именно большим значением К

$$K_{\pi} CH_{3}COOH = 1,75 \cdot 10^{-5}$$
 $K_{\pi} NH_{4}OH = 6,3 \cdot 10^{-5}$

 $K_{_{\mathcal{I}}} \mathbf{CH_{3}} \mathbf{COOH} = 1,75 \cdot 10^{-5}$ $K_{_{\mathcal{I}}} \mathbf{NH_{4}OH} = 6,3 \cdot 10^{-5}$ В данном случае реакция среды будет слабощелочная, т.к $K_{_{\mathcal{I}}} \mathbf{NH_{4}OH}$ несколько больше К СН СООН

Полному и необратимому гидролизу в водном растворе подвергаются некоторые бинарные соединения.

Гидролиз

Гидролиз карбидов:

$${\bf CaC}_2 + {\bf 2H}_2 {\bf O} = {\bf Ca(OH)}_2 + {\bf C}_2 {\bf H}_2 \uparrow$$
 карбид ацетилен кальция

$$Al_4C_3 + 12H_2O = 4Al(OH)_3 + 3CH_4^{\uparrow}$$
 Карбид метан алюминия

Гидролиз

Гидролиз галогенидов:

$$SiCl_4 + 3H_2O = H_2SiO_4 \downarrow + 4HCl$$
 хлорид кремниевая кислота

Гидролиз фосфидов:

кальция

$$Ca_{3}P_{2} + 6H_{2}O = 3Ca(OH)_{2} + 2PH_{3}^{\uparrow}$$
 фосфин

Для обратимого гидролиза условия смещения равновесия определяются принципом Ле Шателье.

Условия усиления и ослабления гидролиза:

Усилить гидролиз	Ослабить гидролиз
(равновесие в сторону продуктов -	(равновесие в сторону исходных веществ
вправо)	- влево).
Нагреть раствор.	Охладить раствор.
Увеличить концентрацию исходных веществ.	Увеличить концентрацию продуктов
Добавить посторонние вещества, чтобы	гидролиза.
связать один из продуктов гидролиза в	
труднорастворимое соединение или удалить	
один из продуктов в газовую фазу.	

Разбор примера (задание частиВ)

Как скажется на состоянии химического равновесия в системе

$$Zn^{2+} + H_2O \leftrightarrow ZnOH^+ + H^+ - Q$$

- 1) добавление H₂SO₄
- 2) добавление КОН
- 3) нагревание раствора
 - 1) добавление H_2SO_4 : $H_2SO_4 = 2H^+ + SO_4^{\ 2-}$; повышение концентрации ионов водорода приводит, по принципу Ле Шателье, к смещению равновесия в системе влево.
 - 2) добавление КОН: КОН= K⁺ + OH⁻; H⁺ + OH⁻=H₂O; гидроксид-ионы связывают ионы водорода в малодиссоциирующее вещество, воду. Снижение концентрации ионов водорода приводит, по принципу Ле Шателье, к смещению равновесия в системе вправо
 - 3) нагревание раствора. По принципу Ле Шателье, повышение температуры приводит к смещению равновесия в сторону протекания эндотермической реакции, т.е. вправо.

Значение гидролиза солей природе, народном хозяйстве, повседневной жизни

(Рассказ учителя с использованием презентации).

В природе

- преобразование земной коры;
 - обеспечение слабощелочной среды морской воды.

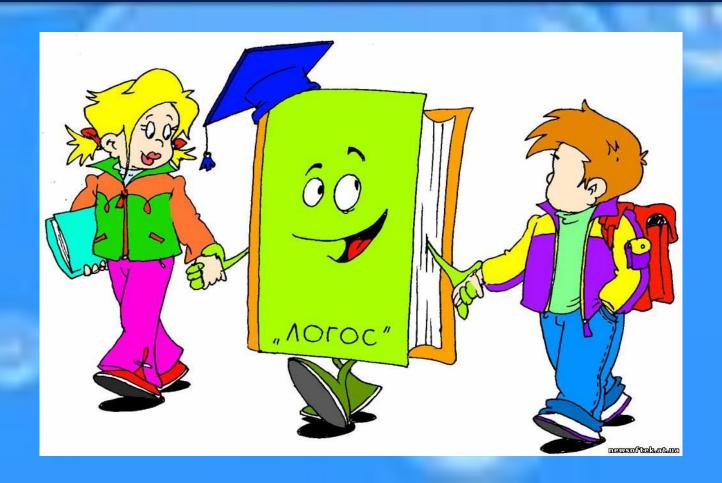
В народном хозяйстве

- выработка из непищевого сырья ценных продуктов (бумага, мыло, спирт, белковые дрожжи)
- очистка промышленных стоков и питьевой воды.

В повседневной жизни

- стирка:
- мытьё посуды;
 - умывание с мылом:
 - процессы пищеварения.

Ответы к заданиям самостоятельной работы


Правильные ответы:

№ 1	№ 2	№3	№4
3122	4124	1232	3512

Рефлексивная таблица

- * 1.Тема нашего сегодняшнего урока ...
- * 2. Передо мной на уроке стояла цель ...
- 3. Сегодня я узнал ...
- * 4. Было интересно ...
- 5. Было сложно...
- * 6.Я понял, что ...
- 7. Теперь я могу ...
- * 8. Я научился ...
- * 9. Я работал на уроке...
- * 10.Выводы урока таковы ...

Успехов в изучении химии!

