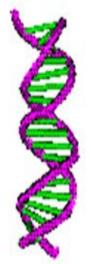

Белки – природные полимеры.

Учитель химии МОБУ СОШ ЛГО с. Пантелеймоновка – Г.П.Яценко

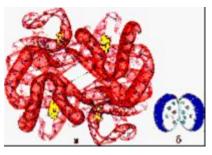
Основные определения.

- Белки это природные полимеры, обладающие высокими значениями молекулярной массы, молекулы которых построены из остатков аминокислот, соединенных пептидной связью.
- □ Связь С- N -, образующаяся между остатком NH О Н аминогруппы одной молекулы аминокислоты и остатком — СО — карбоксильной группы другой молекулы аминокислоты, называется пептидной связью.
- □ Белковая молекула это полимер, в котором пептидная связь повторяется многократно, поэтому полимер называется полипептидом.

Классификация белков.


 Строгая классификация белков на основании их химического строения затруднительна.

Протеины Простые белки


Состоят только из аминокислот.

Белки

Протеиды Сложные белки

Состоят из аминокислот и небелковых простетических групп.

Протеины.

Альбумины: альбумин яичного белка, кровяной

сыворотки, молока.

Глобулины: фибриноген.

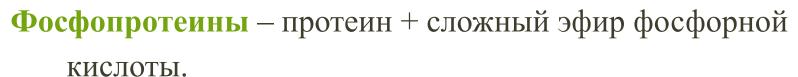
Гистоны: эритроциты.

Протамины.

Проламины: клейковина.

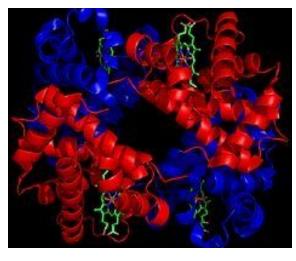
Глютелины.

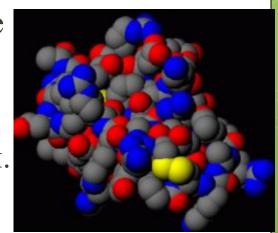
Протеноиды: эластин, белки костеи, хрящевой ткани.



Протеиды:

Нуклеопротеиды — протеин + нуклеиновые кислоты.


Хромопротеиды — протеин + небелковые окрашенные соединения.



Гликопротеины — протеин + углеводные компоненты.

Липопротеиды – протеин + липиды.

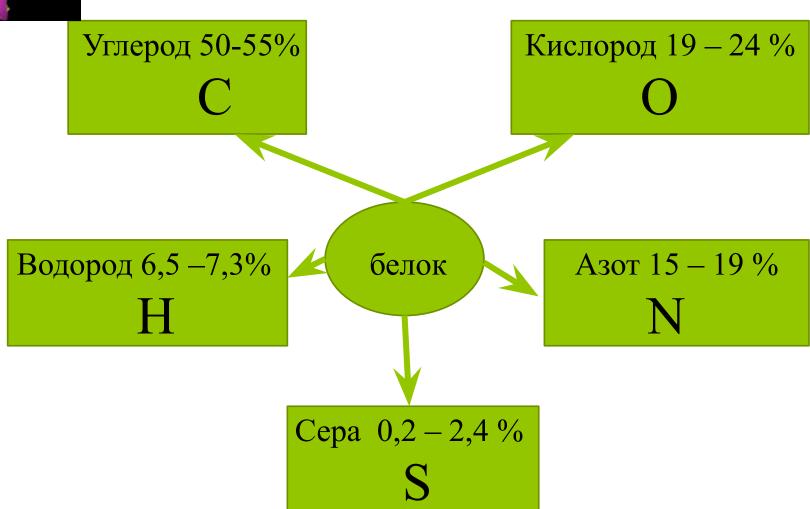
Металлопротеиды – протеин + металлы.

Классификация белков.

По морфологическому признаку можно выделить две большие группы белков:

Фибриллярные - плохо растворимые в воде волокнистого строения

Фиброин шелка

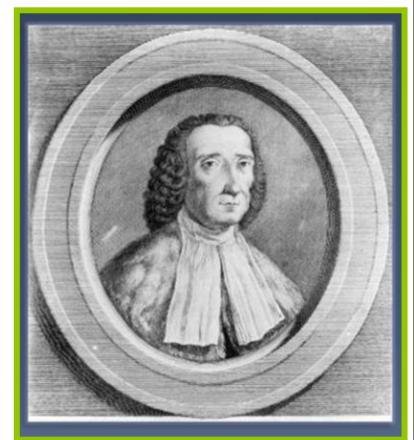


Гемоглобин

Состав белков.

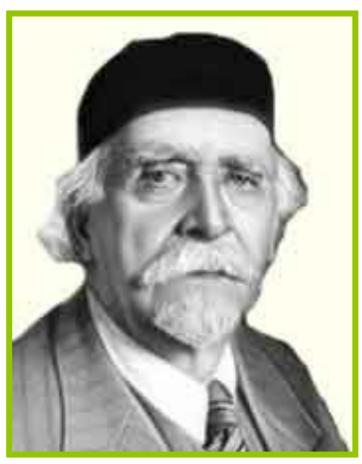
Молекулярный вес некоторых белков.

Название белка	Молекулярный вес
Пепсин (фермент поджелудочной железы)	38 000
Яичный альбумин	45 000
Гемоглобин (белок крови)	65 000
Вирус мозаичной болезни табака	50 000 000



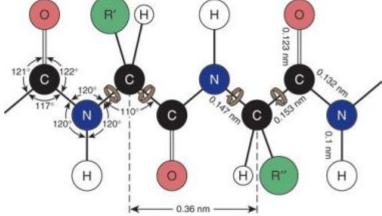
История изучения белковой молекулы.

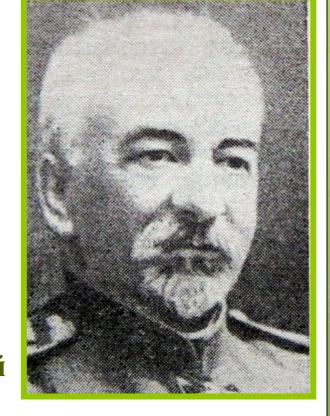
Яконо Бартоломео Беккари в 1728 году впервые выделил белок (в виде клейковины) из пшеничной муки.


Это событие принято считать рождением химии белка.

Яконо Бартоломео Беккари (1682 – 1766)

Изучение строения белковой молекулы.


Н. Д. Зелинский ставил проблему познания внутренней структуры белка в один ряд с проблемой использования внутриатомной энергии.


Николай Дмитриевич Зелинский (1861 – 1953)

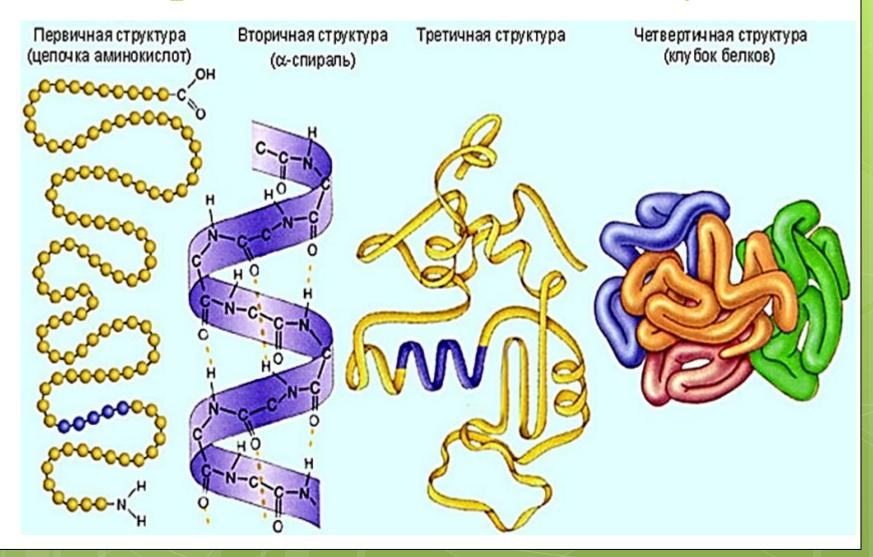
Изучение строения белковой молекулы.

Строение белков было доказано в 1888 году А. Я.

Александр Яковлевич Данилевский (1838 – 1923)

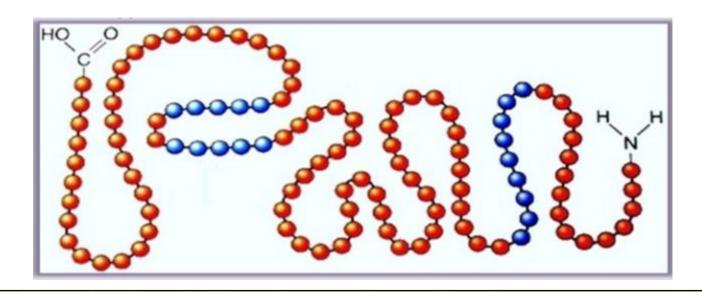
Изучение строения белковой молекулы.

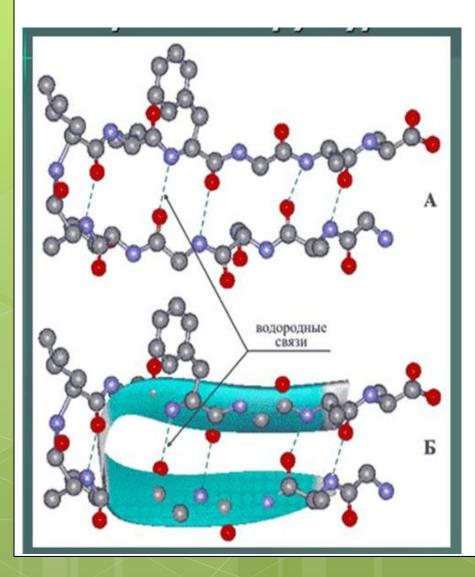
1903 году Э. Фишер предложил пептидную теорию строения белка:


Белки представляют собой полимеры из остатков аминокислот, соединенных пептидной связью

NH - CO.

Эмиль Герман Фишер (1852 – 1919)


Строение белковых молекул.

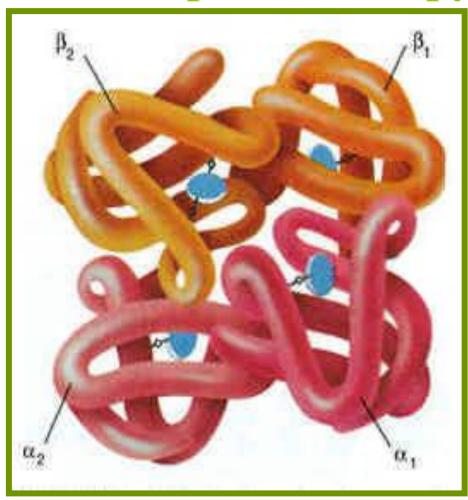

Первичная структура белка.

Представляет собой вытянутую нить; определяется тремя факторами:

- природой аминокислот, входящих в состав белков;
- количеством аминокислот;
- последовательностью аминокислот.

Вторичная структура белка.

Вторичной структурой обладает большая часть белков.


Полипептидные цепочки во вторичной структуре могут быть по — разному расположены в пространстве.

Третичная структура белка.

В формировании третичной структуры, кроме водородных связей, большую роль играет ионное и гидрофобное взаимодействие.

Четвертичная структура белка.

Данная структура фиксируется ионными и водородными связями. Четвертичная структура белка — соединение одинаковых третичных структур.

Свойства белков.

- □ 1. Белки амфотерные электролиты.
- 2. Гидролиз(разрушение первичной структуры белка по пептидным связям):
- а)кислотный (реакция идет при кулинарной обработке пищи).
- б)Ферментативный гидролиз (идет под действием ферментов при переваривании пищи человека и животных).

Свойства белков.

□ 3. Денатурация.

Условия прохождения процесса: нагревание; действие сильных кислот и оснований; действие солей тяжелых металлов.

При денатурации происходят изменения во вторичной и третичной структурах белка. Первичная структура

сохраняется.

Свойства белков.

4. Горение.

При горении белков образуется характерный запах «жженного рога» (определяется содержанием серы в белках).

Продукты горения: азот, диоксид углерода и вода.

Свойства белков.

5. Цветные реакции:1. Биуретовая реакция: Взаимодействие с солями Си в щелочной среде $2NaOH + CuSO_4 \longrightarrow Cu(OH)_2 \checkmark + Na_2SO_4$ Все белки дают фиолетовое окрашивание.

2. Ксантопротеиновая реакция. Эта реакция на циклические аминокислоты:

нагревание

фенилаланин + HONO2 _______ нитрофенилаланин

- H₂O

желтый цвет

3. Сульфгидрильная реакция. На серосодержащие аминокислоты, при нагревании белка с уксуснокислым свинцом образуется черный осадок \

Биологические функции белковых молекул.

«Жизнь – есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка». Ф. Энгельс

Материалы для оформления.

http://pptcloud.ru/datas/biologija/Belki-veschestvo/0020-020-Pervichnaja-struktura.jpg

http://rpp.nashaucheba.ru/pars_docs/refs/103/102532/img5.jpg

http://rpp.nashaucheba.ru/pars_docs/refs/104/103027/img24.jpg

http://900igr.net/datas/khimija/Belki-khimija/0021-021-Pervichnaja-struktura-belka-pri-denaturatsii-sokhra njaetsja.jpg

http://peptidi-zdrav.ru/wp-content/uploads/2014/05/dna8.gif

http://www.lionden.com/graphics/AP/dna_rotating_lg_clr.gif

http://kk.convdocs.org/pars_docs/refs/36/35241/35241_html_31296fb6.gif

http://www.biocenter.ru/images/npcriz_peptid2.jpg

http://900igr.net/datas/biologija/Belki-veschestvo/0019-019-Struktura-belka.jpg

http://900igr.net/datas/khimija/Aminokisloty-i-belki/0039-039-Peptidy-i-belki-Vtorichnaja-struktura-belko v.jpg

http://900igr.net/datas/khimija/Aminokisloty-i-belki/0050-050-Peptidy-i-belki-Funktsii-belkov.jpg

http://900igr.net/datas/khimija/Aminokisloty-i-belki/0040-040-Peptidy-i-belki-Vtorichnaja-struktura-belko v.jpg

http://nsp-zdorovje.narod.ru/article_kr/beauty-img/peptides.jpg

https://encryptedtbn3.gstatic.com/images?q=tbn:ANd9GcSOmibHZAdfcggwbXn2Q9NmEQmnIuFYZLPM1Yn2MrOxNgdt5h0e

http://www.syl.ru/misc/i/ai/82120/132067.gif

 $http://upload.wikimedia.org/wikipedia/commons/f/fa/Histone_handshake.png$

 $http://medivuo.com/uploads/posts/2012-02/1328967759_03e18129ec5ce2719cdec211c362c12c_XL.jpg$

Материалы для оформления.

http://to-name.ru/images/biography/zelinskij-nikolaj.jpg

http://biohimija.ru/wp-content/uploads/2010/07/pepticidnaya-cep.jpg

http://upload.wikimedia.org/wikipedia/commons/thumb/6/64/Odoardo_Beccari.jpg/250pxOdoardo_Beccari.jpg

http://ksufon1.narod.ru/img/3.jpg

http://ru.convdocs.org/pars_docs/refs/110/109618/109618_html_796a099d.png

http://images.pptcloud.ru/4/158146/slide_26.jpg

 $https://encryptedtbn3.gstatic.com/images?q=tbn:ANd9GcSOmibHZAdfcggwbXn2Q9NmEQmn\\ IuFYZLPM1Yn2MrOxNgdt5h0e$

http://www.syl.ru/misc/i/ai/82120/132067.gif

http://upload.wikimedia.org/wikipedia/commons/f/fa/Histone_handshake.png

http://medivuo.com/uploads/posts/201202/1328967759_03e18129ec5ce2719cdec211c362c12c_XL.jpg

http://900igr.net/datas/khimija/Aminokisloty-i-belki/0040-040-Peptidy-i-belki-Vtorichnaja-struk tura-belkov.jpg

http://nsp-zdorovje.narod.ru/article_kr/beauty-img/peptides.jpg

https://encryptedtbn3.gstatic.com/images?q=tbn:ANd9GcSOmibHZAdfcggwbXn2Q9NmEQmnIuFYZLPM1Yn2MrOxNgdt5h0e

http://www.syl.ru/misc/i/ai/82120/132067.gif

http://upload.wikimedia.org/wikipedia/commons/f/fa/Histone_handshake.png

http://medivuo.com/uploads/posts/201202/1328967759_03e18129ec5ce2719cdec211c362c12c_XL.jpg

Информация для педагога.

- □ Презентация предназначена для использования на уроках органической химии в10 классе общеобразовательной школы.
- □ Данный образовательный ресурс дает представления об основных понятиях и свойствах органического вещества белок.
- □ Материал может быть использован:
- □ для иллюстрации объяснений нового материала;
- □ для отработки понятий при обобщении темы;
- □ для подготовки и самоподготовки учащихся к ЕГЭ по предмету «химия».
- □ Презентация подготовлена по материалам УМК под редакцией О. С. Габриеляна.