Аминокислоты

Зеркало Венеры (1898), Sir Edward Burne-Jones / Museu Calouste Gulbenkian Lisbon / The Bridgeman Art Library)

Все объекты этой картине имеют зеркальные отражения. Подобно многим биомолекулам, аминокислоты существуют в виде зеркальных изомеров (стереоизомеров). Обычно, только L-изомеры аминокислот участвуют в биологических процессах.

900igr.net

Понятие аминокислот

Аминокислоты – соединения, в молекулах которых одновременно присутствуют амино- и карбоксильные группы

Классификации аминокислот

α-аминомасляная кислота

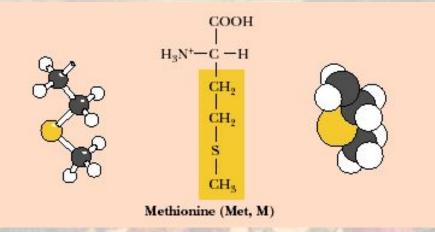
β-аминомасляная кислота

Понятие аминокислот

Аминокислоты – соединения, в молекулах которых одновременно присутствуют амино- и карбоксильные группы

Классификации аминокислот

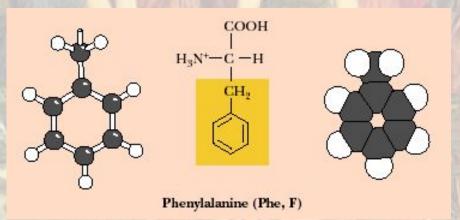
NH₂-CH₂-CH₂-COOH

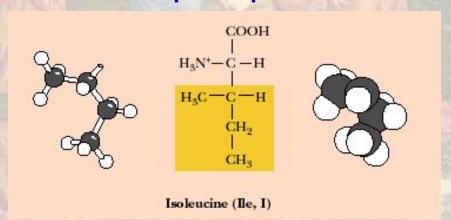

у-аминомасляная кислота

Глицин, моноаминомонокарбоновая кислота

Аспаргиновая кислота, моноаминодикарбоновая кислота

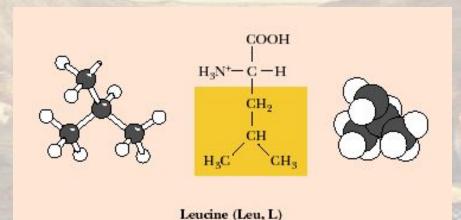
Лизин, диаминомонокарбоновая кислота

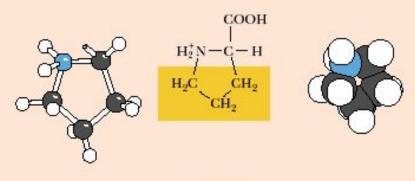

Нейтральные гидрофобные аминокислоты


H₃N⁺-C -H CH₂ CH N H Tryptophan (Trp, W)

COOH

Метионин

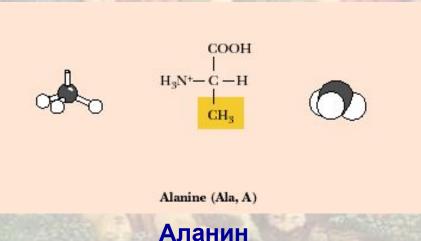

Триптофан

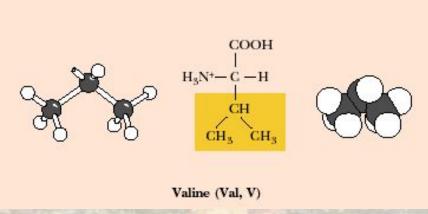


Фенилаланин

Изолейцин

Нейтральные гидрофобные аминокислоты

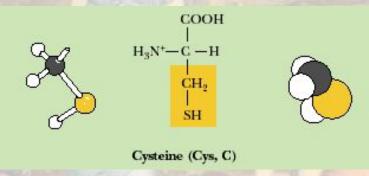




Proline (Pro, P)

Лейцин

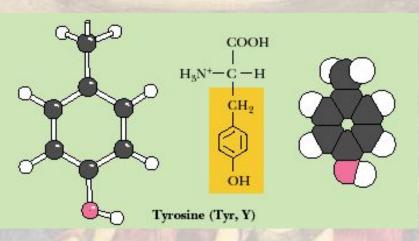
Пролин

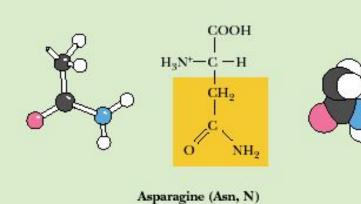

Валин

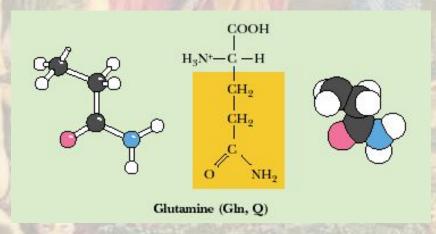
Нейтральные гидрофильные аминокислоты

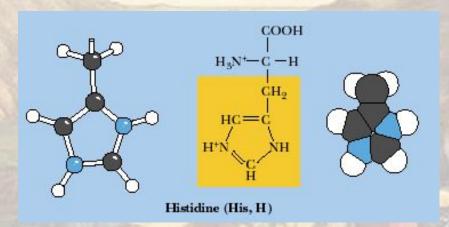
Threonine (Thr, T)

Треонин



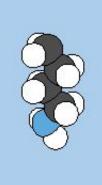

Цистеин


Нейтральные гидрофильные аминокислоты



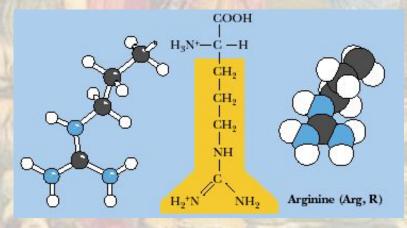
Тирозин

Аспарагин

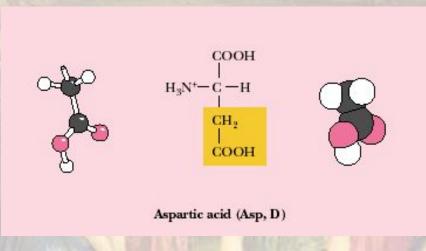


Основные аминокислоты

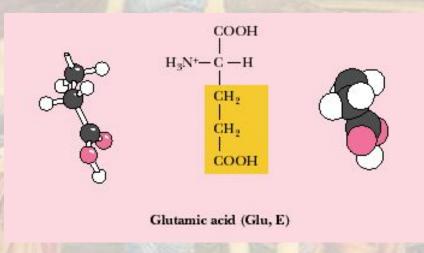
H₃N⁺-C-H


CH₂
|
CH₂
|
CH₂
|
CH₂
|
CH₂
|
NH₃
|

Гистидин


Лизин

COOH



Аргинин

Кислые аминокислоты

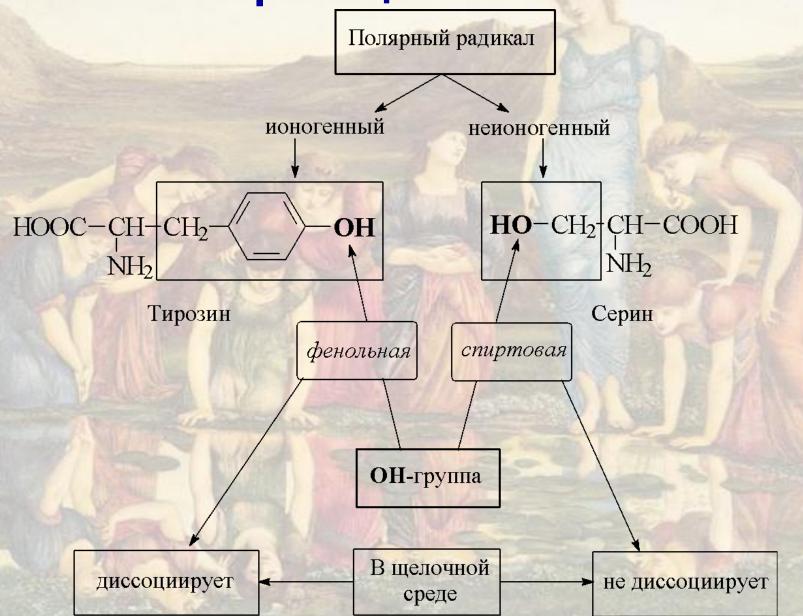
Аспарагиновая кислота

Глутаминовая кислота

Природные источники аминокислот

Название	Открыватель, исходный материал	Материал с наибольшим содержанием			
а) Нейтральные гидрофобные аминокислоты					
Аланин	Вейль, фиброин шелка (1888)	фиброин шелка (29,7%)	6.02		
Валин	Горуп-Безане, экстракт желез (1856)	эластин (17,4%), сухожилия и аорта быка (17,6%)	5.97		
Лейцин	Пруст, творог (1819)	сывороточный альбумин быка (12,8%), кукуруза (19%)			
Изолейцин	Эрлих, патока (1904)	сывороточный альбумин быка (2,6%), белок овса (4,3%)			
Фенилаланин	Шульце и Барбьери, ростки люпина (1879)	а сывороточный альбумин (7,8%), γ-глубулин (4,6%), вальбумин (7,7%)			
Метионин	Мюллер, казеин (1921)	γ-казеин (4,1%), овальбумин (5,2%), β-лактоглобулин (3,2%)			
Триптофан	Гопкинс и Кол, казеин (1901)	лизоцим (яйца) (10,6%), α-лактальбумин (7%))			
Пролин	Фишер, казеин (1901)	сальмин (6,9%), казеин (10,6%), желатин (16,3%)			

Природные источники аминокислот


Название	Открыватель, исходный материал		
	б) Нейтральные гидрофильные	аминокислоты	
Глицин	Браконно, шелк (1820)	фиброин шелка (29,7%)	5.97
Серин	Крамер, шелковый клей (1865)	фиброин шелка (16,2%), трипсиноген (16,7%), пепсин (12,2%)	5.70
Треонин	Розе и др., фибрин (1935)	кератин волос (8,5%), яичный белок (10,5%)	6.50
Тирозин	Либих, сыр (1846)	фиброин шелка (12,8%), папаин (14,7%)	5.65
Аспарагин	Вокелин и Робике, спаржа (1806)		5.41
Глутамин	Шульце, сахарная свекла (1877)		
Цистеин	Бауман, цистин (1884)	кератин волос (14,4%), кератин перьев (8,2%), кератин шерсти (11,9%)	5.02 12

Природные источники аминокислот

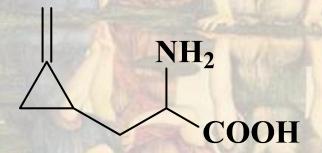
Название	Открыватель, исходный материал	Материал с наибольшим содержанием	(pI)	
	в) Кислые аминокислоты (ис	оногенные)		
Аспарагиновая кислота	Риттхаузен, бобовые (1868)	эдестин (12,0%), глобулин ячменя (10,3%)	3,20	
Глутаминовая кислота	Риттхаузен, бобовые (1866)	глиадин пшеницы (39,2%), глиадин ржи (37,7%), кукуруза (22,9%)	3.22	
	г) Основные аминок <mark>ислоты</mark> (и	ионогенные)	1/199	
Лизин	Дрехсель, казеин (1899)	миоглобин лошади (15,5%), сывороточный альбумин быка (12,8%)	9.74	
Аргинин	Шульце и др., проростки люпина (1886)	сальмин (86,4%), желатин (8,3%)	10.76	
Гистидин	Коссель, стурин (1896)	гемоглобин (7,0%)	7.58	

CONTRACTOR OF THE PARTY OF THE					200.00
0 0 20	б) Нейт	гральные гидрофильные аминокі	ислоты		
Глицин	Gly	H₂NCH₂COOH	Браконно, шелк (1820)	фиброин шелка (29,7%)	5.97
Серин	Ser	HOCH ₂ —CH—COOH NH ₂	Крамер, шелковый клей (1865)	фиброин шелка (16,2%), трипсиноген (16,7%), пепсин (12,2%)	5.70
Треонин	Thr	CH₃CH—CH—COOH OH NH₂	Розе и др., фибрин (1935)	кератин волос (8,5%), янчный белок (10,5%)	6.50
Тирозин	Tyr	но—СН ₂ СНСООН NH ₂	Либих, сыр (1846)	фиброин шелка (12,8%), папаин (14,7%)	5.65
Аспарагин	Asn	NH ₂ —C—CH ₂ —CH—COOH O NH ₂	Вокелин и Робике, спаржа (1806)		5.41
Глутамин	Gln	NH ₂ —C—CH ₂ CH ₂ —CH—COOH O NH ₂	Шульце, сахарная свекла (1877)		
Цистенн	Cys	HSCH ₂ CHCOOH NH ₂	Бауман, цистин (1884)	кератин волос (14,4%), кератин перьев (8,2%), кератин шерсти (11,9%)	5.02

	в) K	ислые аминокислоты (ионогенн	ые)		
Аспарагиновая	Asp	ноос−сн₂−сн−соон	Риттхаузен, бобовые (1868)	эдестин (12,0%),	3,20
кислота		NH ₂		глобулин ячменя (10,3%)	:00
Глутаминовая	Glu	ноос-сн₂сн₂-сн-соон	Риттхаузен, бобовые (1866)	глиадин пшеницы	3.22
кислота		NH ₂		(39,2%), глиадин ржи	
		90000000V		(37,7%), кукуруза (22,9%)	
**	г) Ос:	новные аминокислоты (ионоген	ные)	200 CS 80 85m/40 DE 200	
Лизин	Lys	H ₂ NCH ₂ CH ₂ CH ₂ CHCOOH	Дрехсель, казеин (1899)	миоглобин лошади	9.74
		ŃН ₂	22 22	(15,5%), сывороточный	
60		VALUE AND	location of the state of the st	альбумин быка (12,8%)	No reconstruct
Аргинин	Arg	HN arran arran arran	Шульце и др., проростки	сальмин (86,4%),	10.7
		C-NH-CH2CH2CH2CHCOOH	лютина (1886)	желатин (8,3%)	6
	275	NH ₂			
Гистидин	His	N Z	Коссель, стурин (1896)	гемоглобин (7,0%)	7.58
		NH₂			
		NH CH2CHCOOH			

Номенклатура аминокислот

Номенклатура аминокислот



Природные аминокислоты

Протеиногенные аминокислоты

Некоторые непротеиногенные аминокислоты

2-амино-4-метил-гекс-4-еновая кислота (Hecsculus califormca)

Гипоглицин A (Blighia sapida)

Природные аминокислоты

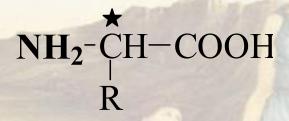
Некоторые непротеиногенные аминокислоты

1-аминоциклопропанкарбоновая кислота (биологический источник этилена в растениях)

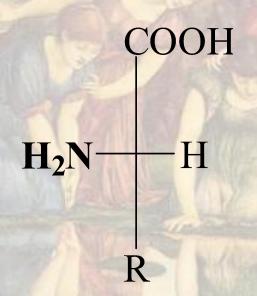
Азетидин-2-карбоновая кислота (Liliaceae)

Каинова кислота (из водоросли Dignea simplex

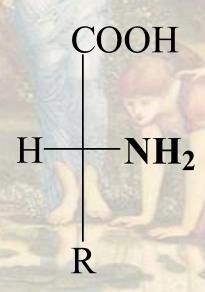
Природные аминокислоты


Некоторые непротеиногенные аминокислоты

Иботеновая кислота (из мухомора, инсектицид)

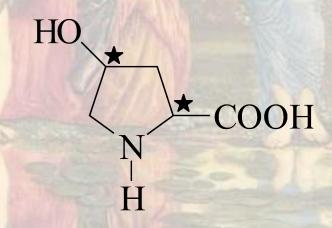

Селеноцистеин (активный центр ферментов типа глутатион пероксидазы)

Дисигербарин (Dysiherbarine); нейротоксин из морской губки Dysidea herbacea

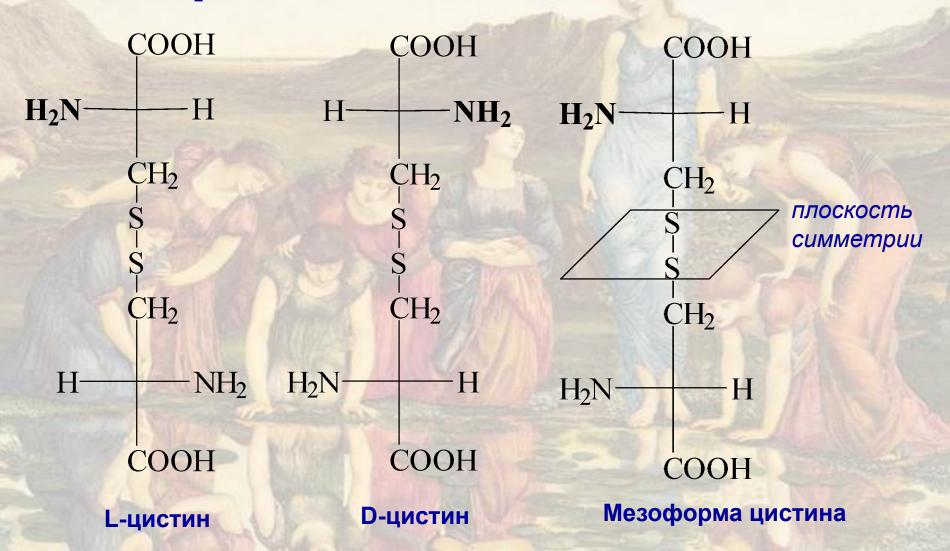

21

α-аминокислота

L-α-аминокислота


D-α-аминокислота

$$CH_3$$
- CH_2 - CH - CH - $COOH$
 CH_3 NH_2

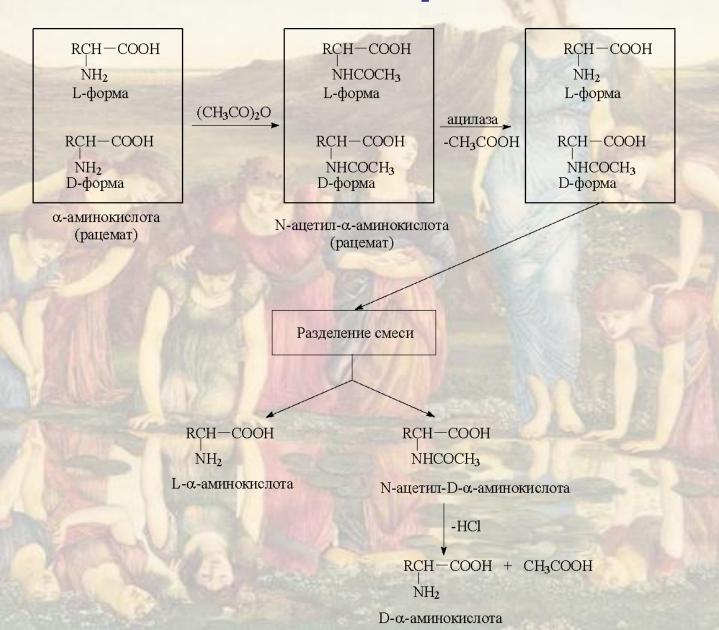

CH₃-CH-CH-COOH
OH NH₂

Изолейцин

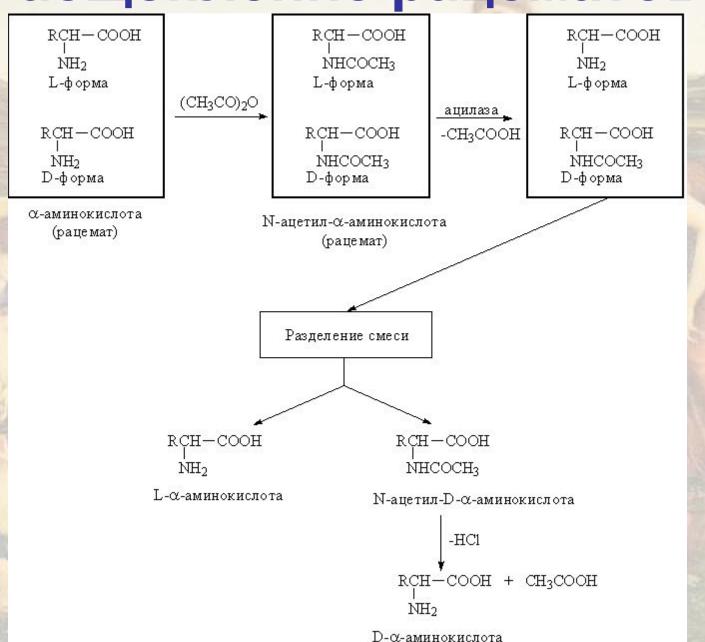
Треонин

4-гидроксипролин

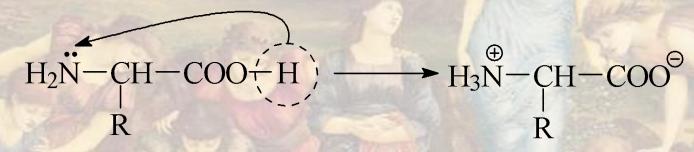
α-Аминокислоты D- и L-стереохимических рядов



Остаток L-аспарагиновой кислоты


Остаток метилового эфира L-фенилаланина

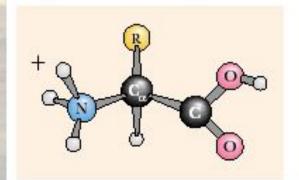
α-Аминокислоты D- и L-стереохимических рядов

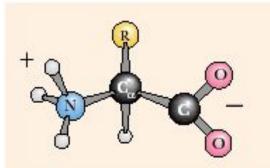

Расщепление рацематов

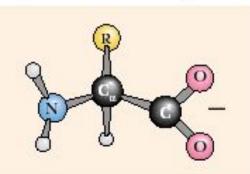
Расщепление рацематов

Разделение аминокислот (эллюирование) 29

Несуществующая в природе форма


Биполярный ион (цвиттер-ион), внутренняя соль


Кислотно-основные свойства


рН 1 Заряд +1

рН 7 Заряд 0

рН 13 Заряд -1

COO_

 H_3 $\stackrel{\downarrow}{N}$ -C-H $\stackrel{\downarrow}{\longrightarrow}$

Катионная форма

Цвиттерион (нейтральный)

Анионная форма

Кислотно-основные свойства

Аминокислота	pKa ₁	pKa ₂	
CH ₃ CH ₃ COOH	4,38	нет	
H ₃ N ⁺ CH(CH ₃)COO ⁻	2,34	9,69	
CH ₃ CH ₂ NH ₂	нет	10,67	

Кислотно-основные свойства

	рКа			
Аминокислота	α-NH ₂	ε-NH ₂	α-СООН	γ-СООН
(Lys) H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ CHCOOH NH ₂	9,0	10,5	2,2	нет
(Glu) HOOC—CH ₂ CH ₂ —CH—COOH NH ₂	9,7	нет	2,2	4,3

Физические и химические свойства Образование эфиров

$$R-CH-COOH + CH_3OH \xrightarrow{HCl (Cyxoŭ)} R-CH-COOCH_3 \xrightarrow{NH_3} R-CH-COOCH_3 \xrightarrow{NH_4Cl} R-CH-COOCH_3 \xrightarrow{NH_4Cl} R-CH-COOCH_3$$

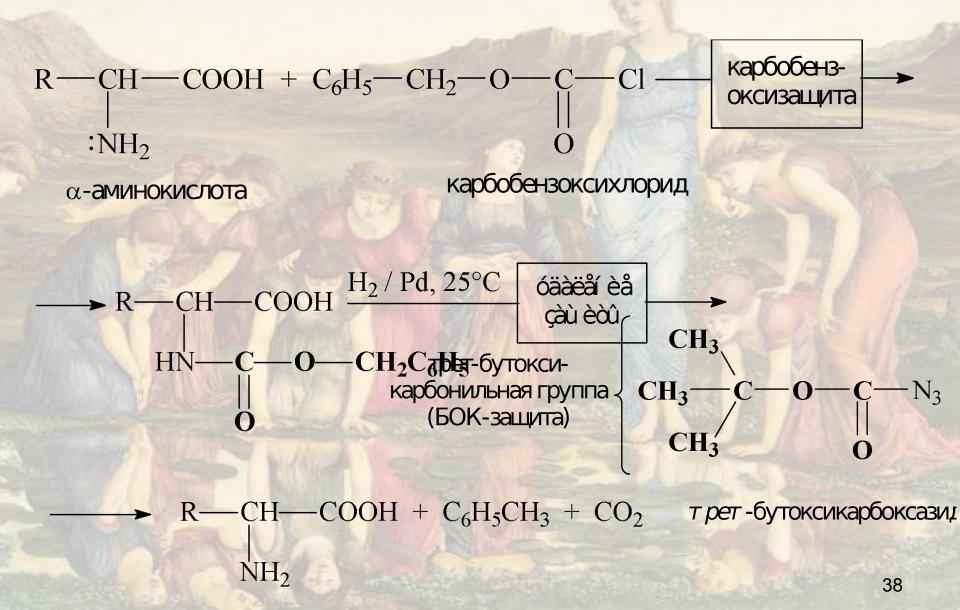
метиловый эфир α -аминокислоты

глицин — кристаллическое вещество с T_{nn} = 292°C метиловый эфир глицина — жидкость с T_{kun} = 130°C.

Э. Фишер (1901)

Образование галогенангидридов

$$R$$
— CH — $COOH$ $SOCl_2$ или $POCl_3$ R — CH — C
 CH_3 — C — NH
 CH_3 — C — NH
 CH_3 — C — C — C


замещенная α -аминокислота

этилхлорформиат

смещанный ангидрид

Образование N-ацильных производных

Карбобензоксизащита (1932 г) карбобензоксихлорид (бензиловый эфир хлормуравьиной кислоты).

Реакции с участием только аминогруппы

$$H_3N^{+}$$
 CHR—COO⁻ + NH₂—R' \longrightarrow H_2N —CHR—COO⁻ NH₃⁺—R'

 H_3N^{+} —CHR—COO⁻ + Me—OH \longrightarrow H_2N —CHR—COO⁻ Me⁺ + H₂O

Алкилирование

$$H_2N-CHR-COO^-Me^+ + R'Cl \longrightarrow R'-HN-CHR-COOH + MeCl$$

$$R'-H_2N^+-CHR-COO^-$$

$$(CH_3)_3N^+-CH_2-COO^-$$

N,N,N-триметилглицин

Простейший бетаин - производное глицина - был впервые обнаружен в соке столовой свеклы *Beta vulgaris*

Ацилирование

$$H_2N-CHR-COO^- + R'-C-C1 + B: \longrightarrow$$

$$\xrightarrow{O}$$

$$= R' - C - NH - CHR - COO^{-}BH^{+} + BH^{+}C1^{-}$$

ИЛИ
$$H_2N - CHR - COO^- + \left(R' - \frac{O}{2}O + B: \longrightarrow \right)$$

$$--- R' - C - NH - CHR - COO^{-}BH^{+} + BH^{+}R' - COO^{-}$$

Образование оснований Шиффа

Образование оснований Шиффа

$$CH=\ddot{N}$$
 \longleftrightarrow $CH-\ddot{N}$ \longleftrightarrow И Т.Д.

«Нингидриновая реакция»

43

Дезаминирование аминокислот

$$OH$$
 \downarrow
 $H_3N^+-CHR-COO^-+HNO_2$
 \longrightarrow RCH $-COOH+N_2+H_2O$

Метод Ван-Слайка

А. Внутримолекулярное дезаминирование

$$R-CH_2-CH-COO$$
 \longrightarrow $R-CH=CH-COOH + NH_3$
 NH_3^+

(таким образом у некоторых микроорганизмов и высших растений аспарагиновая кислота превращается в фумаровую)

Б. Восстановительное дезаминирование

$$NH_3^+-CHR-COO^- + 2H^+ \longrightarrow R-CH_2-COOH + NH_3^+$$

(у некоторых микроорганизмов)

В. Гидролитическое дезаминирование

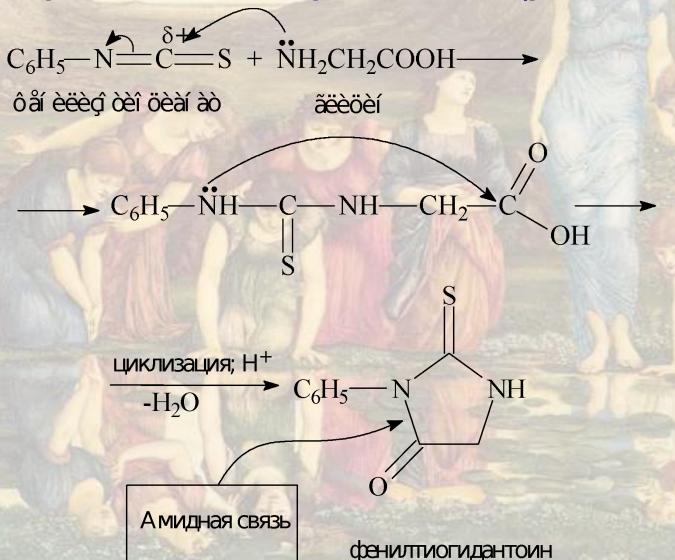
$$NH_3^+-CHR-COO^- + H_2O \longrightarrow R-CH-COOH$$

(тип дезаминирования, характерный для микроорганизмов)

Г. Дегидратазное дезаминирование

$$CH_2-CH-COO^- \xrightarrow{\text{фермент}} CH_2=C-COO^- \longrightarrow OH NH_3^+ NH_3^+$$

$$- CH_3 - C - COO^{-} \xrightarrow{H_2O} CH_3 - C - COO^{-} + NH_4^{+}$$


$$NH_2^{+} O$$

(этот тип дезаминирования характерен для таких аминокислот, как серин, треонин, цистеин, гомоцистеин)

Образование ДНФ-производных

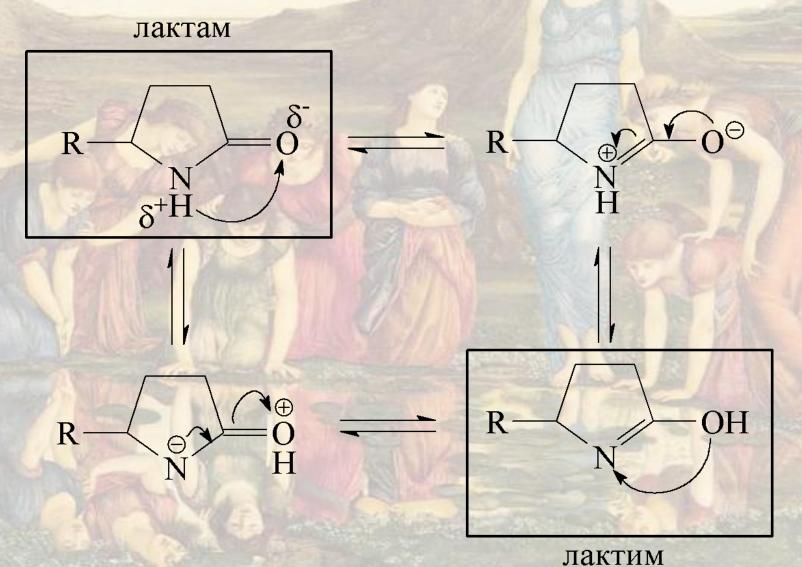
Образование ФТГ-производных (реакция Эдмана)

Отношение аминокислот к нагреванию

α-аминокислоты

$$R \xrightarrow{H_3N \oplus} {}^{\Theta}OOC \\ R \xrightarrow{+} R \xrightarrow{R} R \xrightarrow{R} R$$

$$COO^{\Theta} H_3N \oplus$$


$$R \xrightarrow{+} R \xrightarrow{+} R \xrightarrow{+} R$$

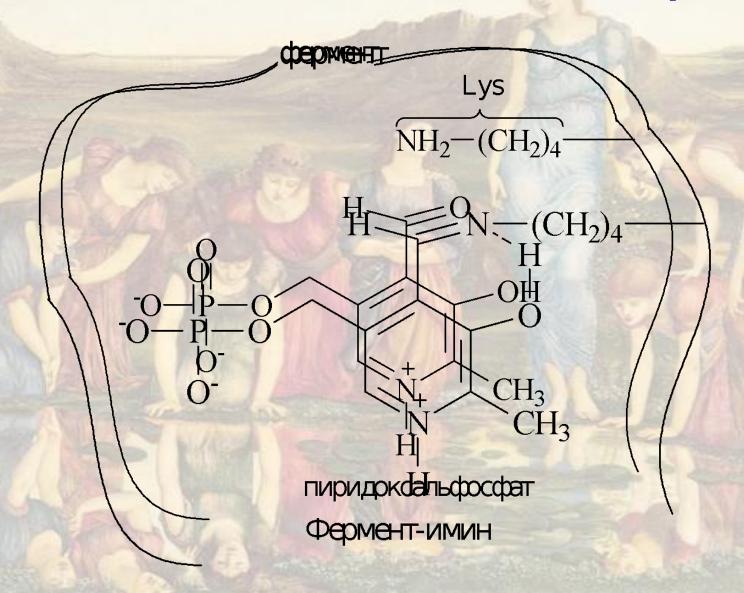
дикетопиперазин

Отношение аминокислот к нагреванию

β-аминокислоты

Лактим-лактамная таутомерия

Отношение аминокислот к нагреванию


б-аминокислоты

Отношение аминокислот к нагреванию

ω-аминокислоты

n H₃N⁺—(CH₂)₅—COO⁻ —
$$\leftarrow$$
 — \leftarrow NH—(CH₂)₅—C— \rightarrow n

Трансаминирование

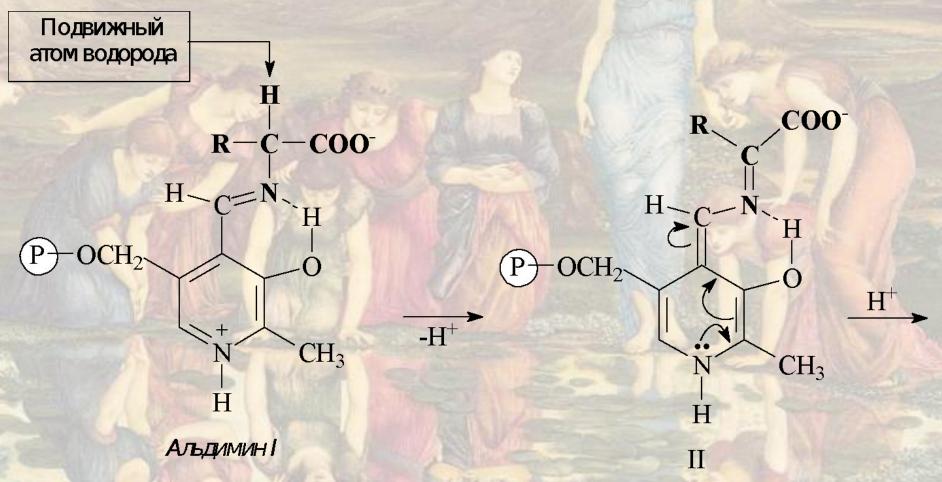
Донорная α-аминокислота

Акцепторная α-оксокислота

 $HOOC-CH_2-CH-COOH + HOOC-CH_2-CH_2-C-COOH = NH_2$

трансаминаза + пиридоксальфосфат

L-аспаргиновая кислота


 α -оксоглутаровая кислота

Щавелевоуксусная кислота

А кцетторная α-оксокислота L-глутаминовая кислота

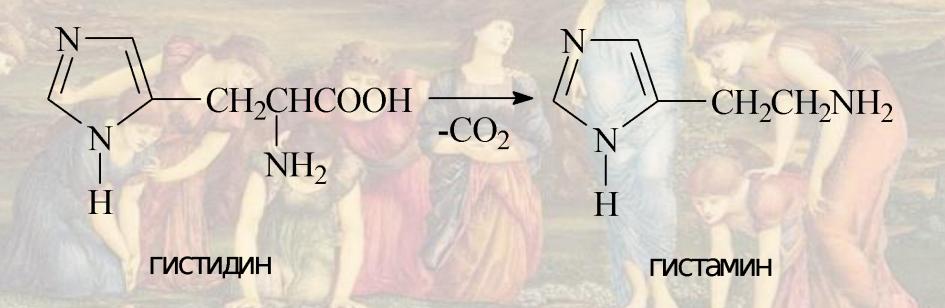
Донорная α -аминокислота

Перенос аминогруппы

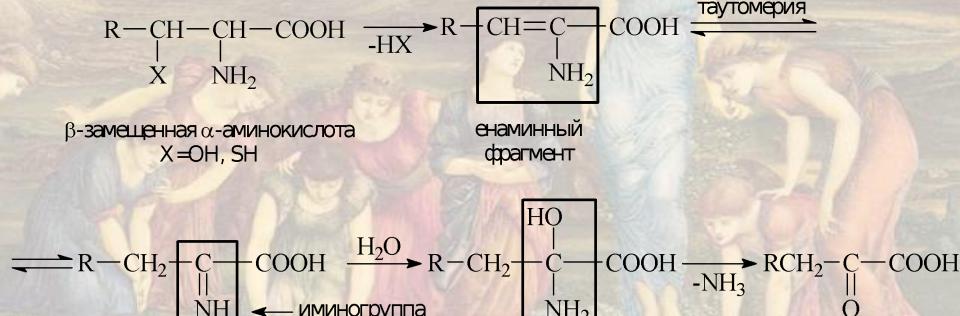
Перенос аминогруппы

Пиридоксаминфосфат

 α -оксокислота


Декарбоксилирование

$$^{-}$$
ООС $^{-}$ СН $^{-}$ NH $_{3}^{+}$ $^{+}$ Пиридоксальфосфат $^{+}$ RCH $_{2}$ NH $_{2}$ + CO $_{2}$ $^{\alpha}$ -аминокислота амин


Декарбоксилирование в организме

Декарбоксилирование в организме

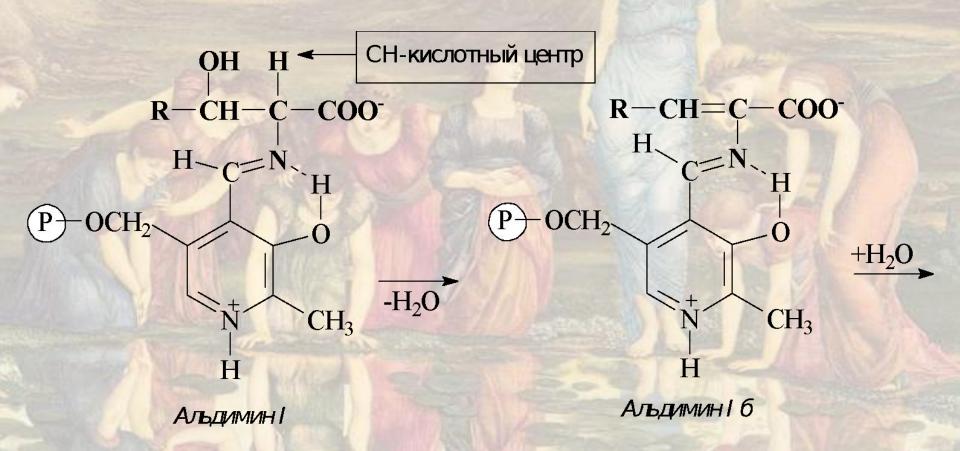
Декарбоксилирование в организме

Элиминирование

 α -иминокислота

карбиноламинная группа

 α -оксокислота


элиминирование-гидратация

Элиминирование

$$CH_2-CH-COOH \xrightarrow{-H_2O} CH_2=C-COOH \xrightarrow{\text{таутомерия}} CH_3-C-COOH \xrightarrow{NH_2} NH$$
 Серин енаминнокислота α -иминокислота

$$H_2O$$
 CH_3 CH_3

Элиминирование

Элиминирование

Пиридоксальфосфат

+ R-CH=C-COO-NH₂

V

R-CH₂-C-COO-
$$\frac{+H_2O}{-NH_3}$$
 R-CH₂-C-COO-NH

V a

α-оксокислота

Альдольное расщепление

$$HOCH_2-CH-COO^-\longrightarrow CH_2-COO^-+ C=O$$
 NH_3^+ N

Окислительное дезаминирование

HOOCCH
$$_2$$
CH $_2$ CHCOOH $=$ HAД $^+$ HOOCCH $_2$ CH $_2$ CCOOH HAДH $_2$ HAДH $_2$ NH NH $_2$ NH $=$ α -иминоглутаровая кислота

 α -оксоглутаровая кислота