

А Вы, коллега, сегодня в ХАЛАТЕ?!

Адсорбционные равновесия и процессы на подвижных и неподвижных границах раздела фаз. Факторы, влияющие на адсорбционную способность

Лекция №7

Лектор: канд. хим. наук, доцент

Иванова Надежда Семёновна

Адсорбция – ...

... самопроизвольное перераспределение молекул компонента между объёмом фазы и поверхностью раздела.

Положительная — сопровождается накоплением компонента на поверхности.

Отрицательная — сопровождается накоплением компонента в глубине фазы.

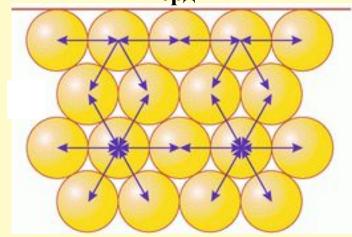
Основные понятия

4

Адсорбенты – вещества, на поверхности которых идут адсорбционные процессы. Бывают жидкие и твёрдые.

Адсорбтивы — вещества, которые накапливаются на поверхности адсорбента. Находятся в жидком или газообразном состоянии.

Основные понятия


5

Адсорбционная *система с подвижной поверхностью* раздела фаз реализуется в случае жидкого адсорбента.

Адсорбционная *система с неподвижной поверхностью* раздела фаз — в случае твёрдого адсорбента.

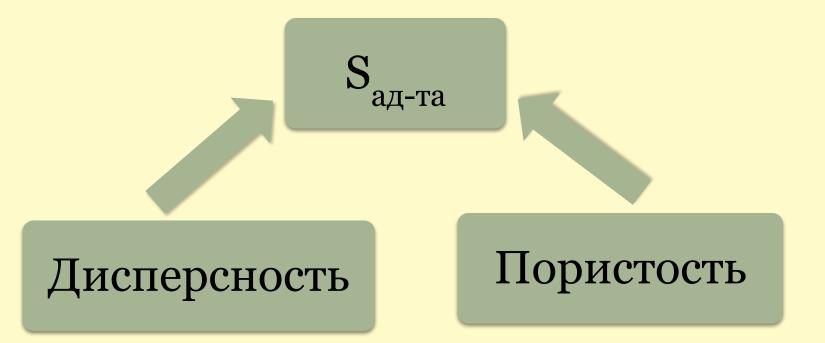
Причина адсорбции – ...

твёрдый

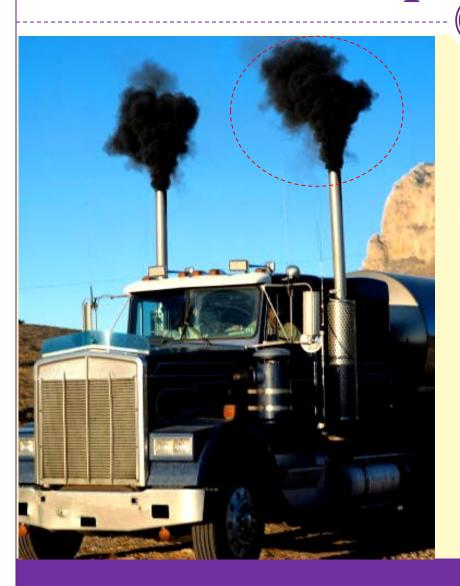
... энергетическая неуравновешенность частиц адсорбента в поверхностном слое, что ведёт к возникновению поверхностной энергии

 $(C \ni \Pi, G_s).$

СЭП - ...


... термодинамическая функция, характеризующая энергию межмолекулярного взаимодействия частиц на поверхности раздела фаз с частицами каждой из контактирующих фаз.

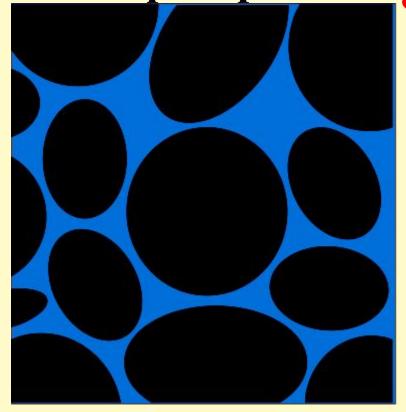
$$G_{s} = \sigma \cdot S,$$

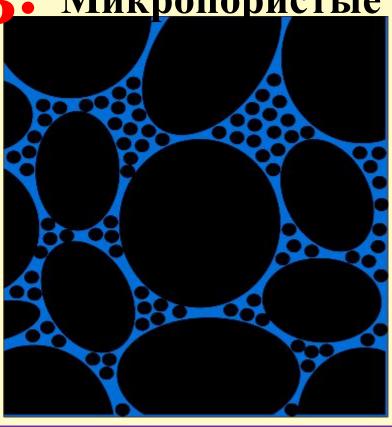

где S – площадь поверхности адсорбента,

 σ – поверхностное натяжение.

S – главная характеристика твёрдого адсорбента.

Классификация адсорбентов по пористости




1. Непористые:

 S, G_s и адсорбционная способность малы.

Классификация адсорбентов по пористости

2. Макропористые 3. Микропористые

Поверхностное натяжение - ...

- свободная энергия, которой обладает 1см²
 поверхностного слоя.
- ... работа, необходимая для создания 1см²
 поверхностного слоя [Дж/м²].
 - **о** главная характеристика жидкого адсорбента.

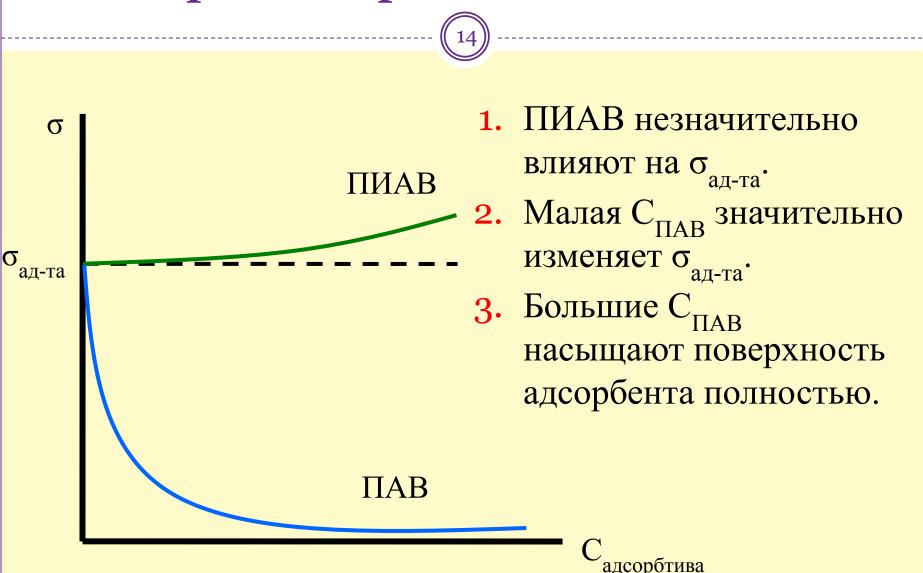
Классификация веществ по величине поверхностного натяжения

а Поверхностно-активные вещества (ПАВ,

Surfactants) — адсорбтив с меньшим, чем у адсорбента σ . Накапливаясь на поверхности адсорбента, понижает G_s и обладает положительной адсорбцией.

Классификация веществ по величине поверхностного натяжения

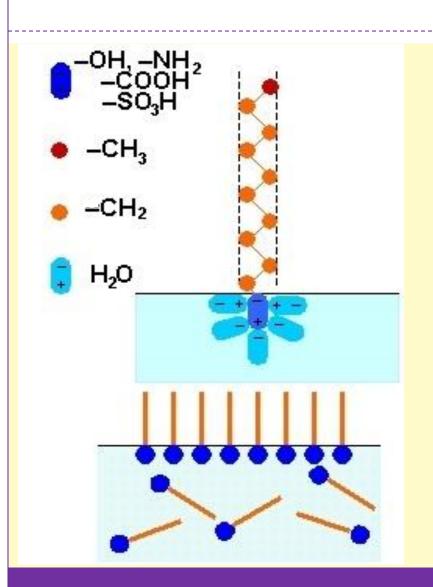
а Поверхностно-инактивные вещества (ПИАВ) –

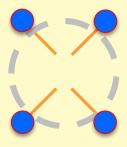

адсорбтив с большим, чем у адсорбента σ.

Накапливаясь на поверхности адсорбента,

повышает G_s , поэтому вытесняется вглубь

адсорбента, обладая отрицательной адсорбцией.


Изотерма поверхностного натяжения



Правило Дюкло-Траубе – ...

... поверхностная активность ($\mathbf{q} = -\Delta \boldsymbol{\sigma}/\Delta \mathbf{C}$) в гомологическом ряду нормальных жирных кислот, спиртов и аминов возрастает с удлинением углеводородной цепи, в среднем, в 3,2 раза на каждую $\mathrm{CH_2}$ – группу.

Строение дифильных ПАВ

Роль ПАВ в развитии аэроэмболии: пузырьки газа плохо деформируются и закупоривают кровеносные сосуды.

Роль дифильных ПАВ

 $\sigma_{\rm H2O} = 72,2 \text{ мДж/м}^2,$

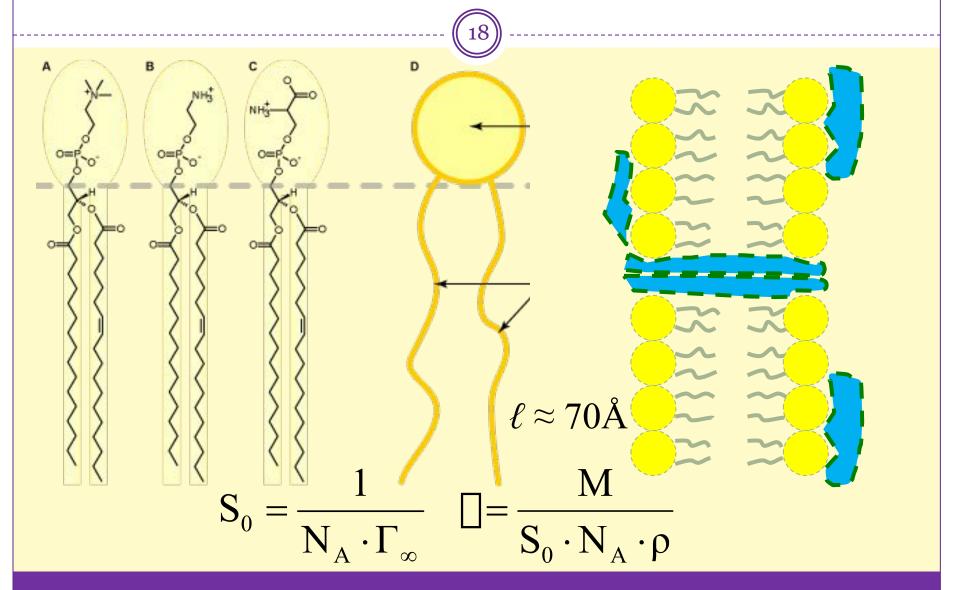
поэтому вода образует

прочные

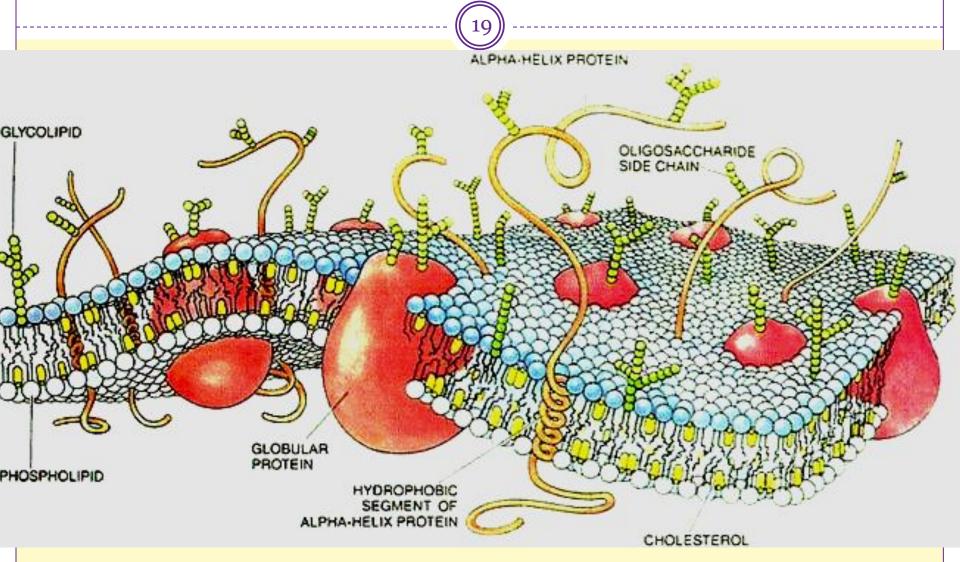
поверхностные

плёнки. При

попадании в воду


ПАВ идёт её

разрыхление, на чём основан анализ желчных


кислот в моче (проба Гайфкрафта).

Строение клеточной мембраны

Мозаичная модель строения мембраны

1962 г. Мюллер разработал методику получения искусственных мембран.

Адсорбционная способность (Г) ...

... количественно выражается числом моль адсорбтива, накапливающихся на границе раздела фаз, в расчёте на единицу площади поверхности раздела.

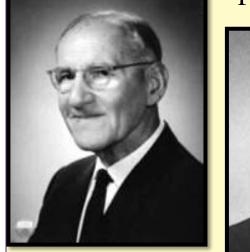
$$\Gamma = \frac{n_0 - n}{S} \left[\frac{MOJIb}{M^2} \right]$$

1. Природа адсорбента определяется:

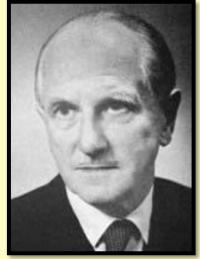
- $oldsymbol{a}$. геометрическим фактором связан с $S_{\text{адсорбента}}$, которая зависит от пористости и дисперсности.
- **b.** химическим фактором связан со свойствами поверхностных групп, которые делят на полярные (-ОН) и малополярные (-СООН). Отсюда и деление твёрдых адсорбентов на <u>полярные</u> (гидрофильные) и <u>неполярные</u> (гидрофобные). К <u>полярным</u> относят: цеолиты, силикагель, алюмогель.

 $R-OH+OH \sqcap R-OH\cdotsOH$

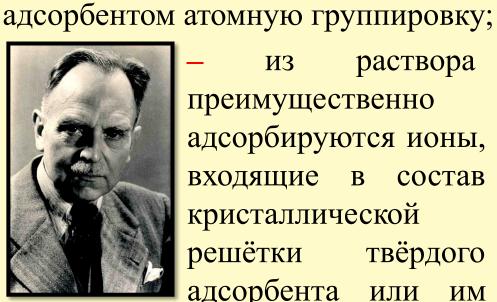
К <u>неполярным</u> относится активированный уголь. Уголь водой практически не смачивается, но адсорбирует органические вещества.


2. Природа адсорбтива определяется:

- α . разными σ (ПАВ, ПИАВ).
- **b.** *размерами молекул:* из 2-х однотипных веществ лучше адсорбируется то, у которого больше размер частиц (PO_4^{3-} адсорбируется хуже AsO_4^{3-}).
- **с.** *способностью к конденсации:* лучше адсорбируется то газообразное вещество, пары которого конденсируются в порах.


d. наличием общей атомной группировки с адсорбентом (правило Панета-Фаянса-Гана):

- твёрдые адсорбенты преимущественно адсорбируют

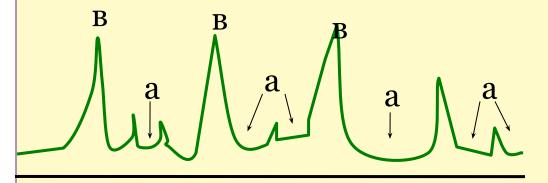

те вещества, которые имеют общую с

Казимир Фаянс (1887-1975)

Фридрих Адольф Панет (1887 - 1958)

Отто Ган (1879 - 1968)

раствора И3 преимущественно адсорбируются ионы, входящие в состав кристаллической решётки твёрдого адсорбента или изоморфные.

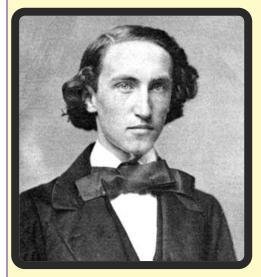

Ребиндер (1898 - 1972)

Природа растворителя определяется правилом выравнивания полярностей:

на полярных адсорбентах лучше адсорбируются полярные адсорбтивы из малополярных растворителей; на

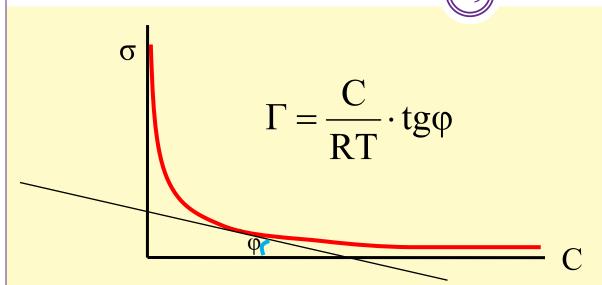
неполярных адсорбентах – неполярные Пётр Александрович аосоротивы из полярных растворителей. данном растворителе растворяется данный адсорбтив, тем он хуже адсорбируется; чем хуже растворяется – тем лучше из него адсорбируется.

4. Температура. Её влияние сильнее для адсорбционных процессов, происходящих на неподвижной поверхности раздела фаз. Твёрдая поверхность адсорбента никогда не бывает идеально гладкой, на ней всегда есть деформированные участки. Выступы и впадины получили название *активных центров*.

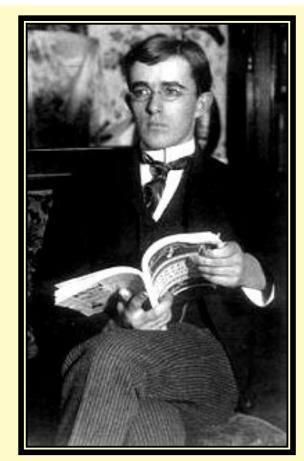

- **а** центры физической адсорбции.
- в центры химической адсорбции.

а – центры физической адсорбции, обусловленной межмолекулярным взаимодействием. Молекулы адсорбтива попадают в «силовые ловушки». Силы межмолекулярного взаимодействия слабые. Увеличение температуры вызывает десорбцию.

В – центры химической адсорбции, обусловленной сильными валентными связями между адсорбентом и адсорбтивом. Поэтому влияние температуры двояко.



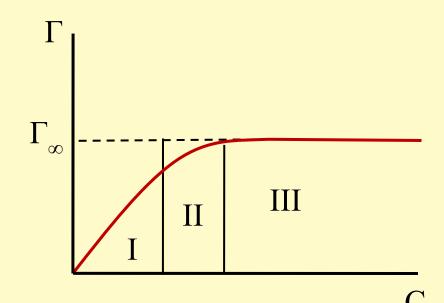
- **5. Концентрация адсорбтива.** Влияние концентрации описывается уравнениями изотермы адсорбции:
 - а) для жидкого адсорбента уравнением Гиббса:


$$\Gamma = -\frac{C}{RT} \cdot \frac{\Delta \sigma}{\Delta C} - \frac{\Delta \sigma}{\Delta C} = q$$

при $\mathbf{q} > \mathbf{0} \Rightarrow \Gamma > \mathbf{0}$. Имеет место для <u>ПАВ</u> при $\mathbf{q} < \mathbf{0} \Rightarrow \Gamma < \mathbf{0}$. Имеет место для <u>ПИАВ</u>

b) для твёрдого адсорбента — уравнением Ленгмюра:

$$\Gamma = \Gamma_{\infty} \cdot \frac{KC}{1 + KC}$$

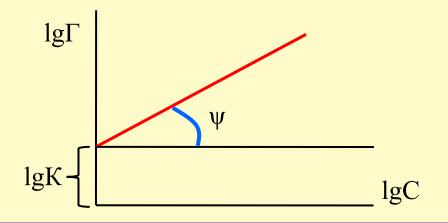

Ирвинг **Ленгмюр** (1881 – 1957)

І. При
$$C << K \Rightarrow$$

$$\Gamma = \Gamma_{\infty} \cdot \frac{C}{K}$$

III. При
$$C >> K \Rightarrow$$

$$\Gamma = \Gamma_{\infty}$$


Недостатки уравнения Ленгмюра:

- 1. уравнение не описывает область II.
- 2. описывает только монослойную адсорбцию.

с) для твёрдого адсорбента — уравнением Фрейндлихи:= KC^{1/n}

Описывает область II на изотерме адсорбции Ленгмюра.

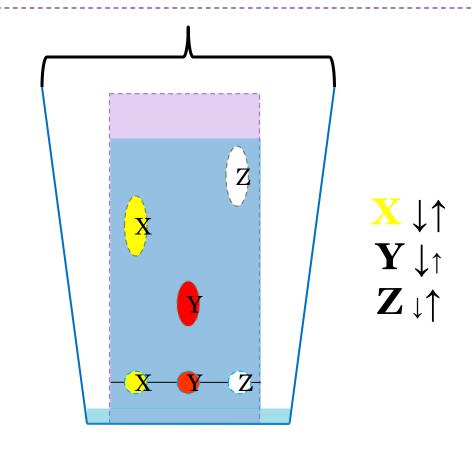
Для нахождения констант К и п уравнение логарифмируют и строят график.

$$\lg \Gamma = \lg K + \frac{1}{n} \lg C,$$

$$tg\psi = \frac{1}{n}$$

Хроматография - ...

... физико-химический метод разделения компонентов подвижной фазы при контакте с неподвижной фазой, основанный на многократно протекающих процессах адсорбции – десорбции.


Эффективность хроматографии зависит: 1) от физико-химических свойств неподвижной и подвижной фазы; 2) от сродства разделяемых веществ к фазам; 3) от условий хроматографирования (T, $\upsilon_{\text{пф}}$, $\tau_{\text{разд.}}$)

Сущность хроматографии

Практическая ценность

Разделяемые вещества выделяются в том же виде, в котором они существовали в смеси.

Вывод: чем больше сродство у вещества к неподвижной фазе, тем меньше скорость его передвижения с подвижной фазой и накапливаться оно будет ближе к старту.

Классификация хроматографических методов

34

- 1. По механизму разделения
- 2. По аппаратурному оформлению
- 3. По агрегатному состоянию фаз

¦Адсорбционная

соснована на избирательной на веществ на твёрдом дасорбенте)

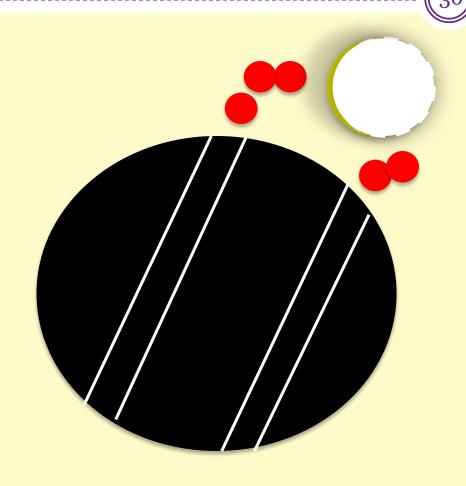
По механизму разделения

Молекулярноситовая

(основана на размичии в размерах молекул адсорбтива)

Распределительная

(основана на различиях в растворимости отдельных компонентов смеси в 2-х несмешивающихся жидкостях)


Афинная / биоспецифическая

(основана на геометрическом соответствии структуры активного центра адсорбента и структуры алсорбтива)

Ионообменная

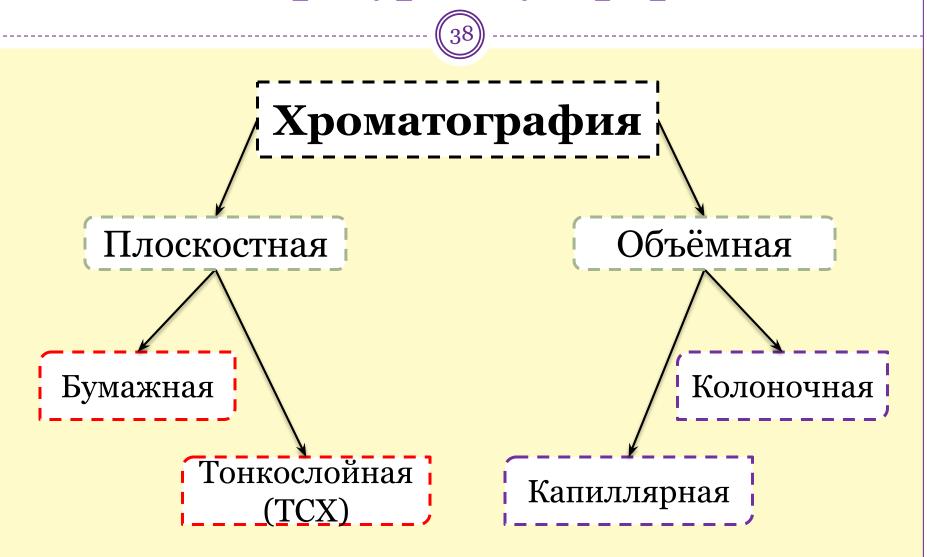
основана на различной способности к дадсорбтива) обмену ионов адсорбента на ионы веществ, входящих в состав смеси)


Молекулярно-ситовая хроматография ...

... используется для разделения смесей белков по фракциям.

В роли адсорбента выступают **сефадексы** — пористые гранулы с разным размером пор, в которые попадают белки с соизмеримыми размерами молекул.

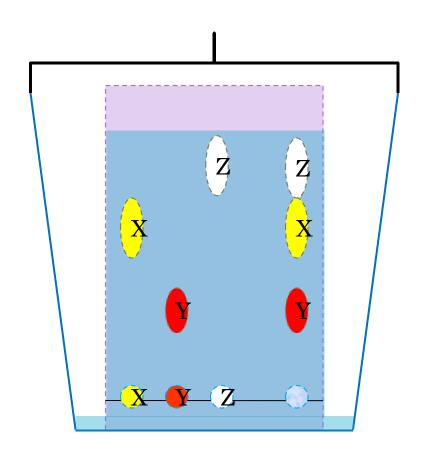
Афинная / биоспецифическая адсорбция...



Особое распространение получила для разделения белков, БАВ, ферментов, антител, гормонов и т.п.

На адсорбент наносят антиген и пропускают смесь антител, из которых только один комплементарен антигену.

2. По аппаратурному оформлению


Неподвижная фаза:

Al₂O₃, силикагель, целлюлоза

Подвижная фаза:

органические растворители

Тонкослойная хроматография

Детектирование хроматограмм – обнаружение зон разделённых веществ.

Для этого используются специфические и универсальные реагенты — вещества, дающие окрашенные соединения с компонентами смеси.

Для **идентификации веществ** используют:

1) свидетели (как правило, свидетели и компоненты имеют одинаковую окраску при детектировании);

2) коэффициент распределения R_{f}

представляющий собой отношение пути (ℓ), пройденного компонентом смеси, к пути, пройденному растворителем.

 $R_f = \frac{\prod x}{\prod p}$ $\ell(p)$ – путь от линии старта до линии фронта.

Использование хроматографии в медицине

- 1. Анализ крови на присутствие алкоголя и продуктов его распада в печени под действием <u>цитохрома</u> <u>р450</u>, наркотиков, летучих веществ, вызывающих токсикоманию (явление зарегистрировано только в РФ).
- Незаменимый метод для допинг-контроля (обнаружение стимулирующих веществ в организме спортсменов).

Использование хроматографии в медицине

3. Выявление микрокомпонентов, не определяемых другими методами, которые появляются при наличии той или иной патологии.

Значение хроматографии как диагностического метода постоянно растёт!

Спасибо за внимание!

