Белки.

Их структура, соединения и применение

Проверил: учитель химии Беседина Л.Н. Выполнили: ученицы 10 «Б» класса Воронкова Лера Козлова Оксана

Как кислоты, они взаимодействуют с основаниями, образуя соль и воду:

$$H_2N$$
— CH — $COOH$ + NaOH \longrightarrow H_2N — CH — $COONa$ + H_2O .

натриевая соль аминокислоты

Спиртами, образуя сложные эфиры:

$$\begin{array}{c} H_2N-CH-COOH+HOR' & \longrightarrow \\ H_2N-CH-COOR'+H_2O. \\ R \end{array}$$

сложный эфир аминокислоты

Как основания, аминокислоты реагируют с кислотами, образуя соли:

$$\begin{array}{c} H_2N-CH-COOH+HCl\longrightarrow \begin{bmatrix} H_3N-CH-COOH \\ R \end{bmatrix}^+Cl^-. \end{array}$$

хлороводородная соль аминокислоты Важнейшим свойством аминокислот является их способность вступать в реакцию поликонденсации друг с другом:

Гидролизом аспарагина можно получить аспарагиновую кислоту.

Глутаминовая кислота способна взаимодействовать с аммиаком, превращаясь в амид – глутамин.

глутаминовая кислота

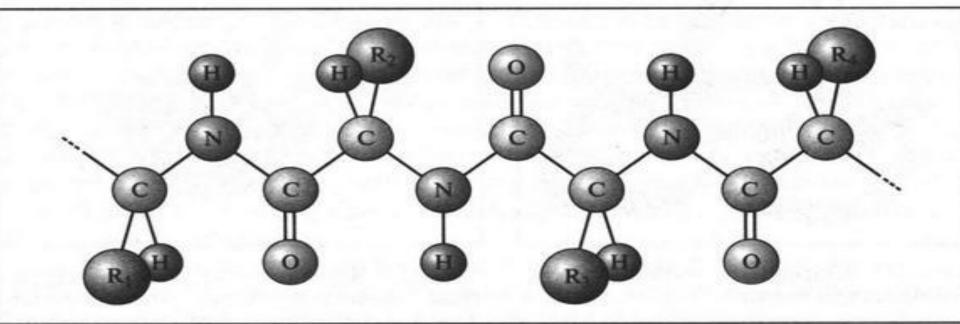
$$\longrightarrow$$
 H₂N-C-CH₂-CH₂-CH-COOH + H₂O.
O NH₂

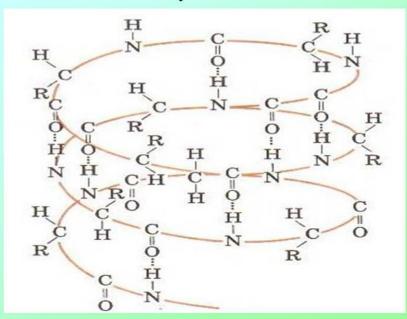
глутамин

	Структура белковой молекулы	Характеристика структуры	Тип связи, определяю- щий струк- туру	Графическое изображение
	Первич- ная— линейная	Порядок чередования аминокислот в полипептидной цепи — линейная структура	Пептидная связь —NH—СО—	TOTAL
	Вторич- ная — спирале- видная	Закручивание по- липептидной ли- нейной цепи в спи- раль — спирале- видная структура	Внутримоле- кулярные водородные связи	COHN COHN
	Третич- ная— глобуляр- ная	Упаковка вторич- ной спирали в клу- бок — клубочко- видная структура	Дисульфид- ные и ион- ные связи	

т

_

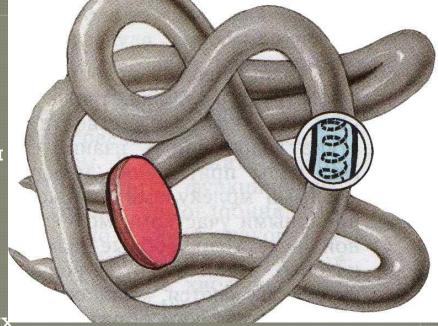



Рис. 25. Первичная структура молекулы белка

Это последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

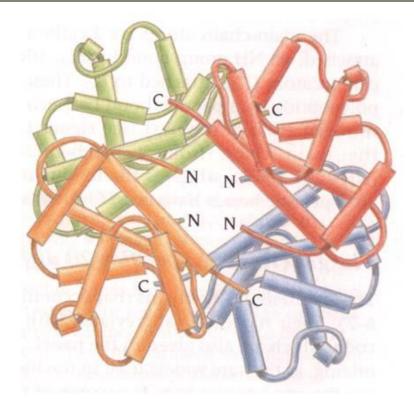
Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 1020. Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Это упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все CO- и NHгруппы принимают участие в образовании водородных связей Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сvхожилия).


Вторичная (спиралевидная) структура молекулы белка.

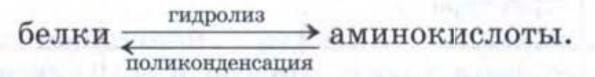
Укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков.

Основную роль в образовании третичной структуры играют гидрофильногидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина.

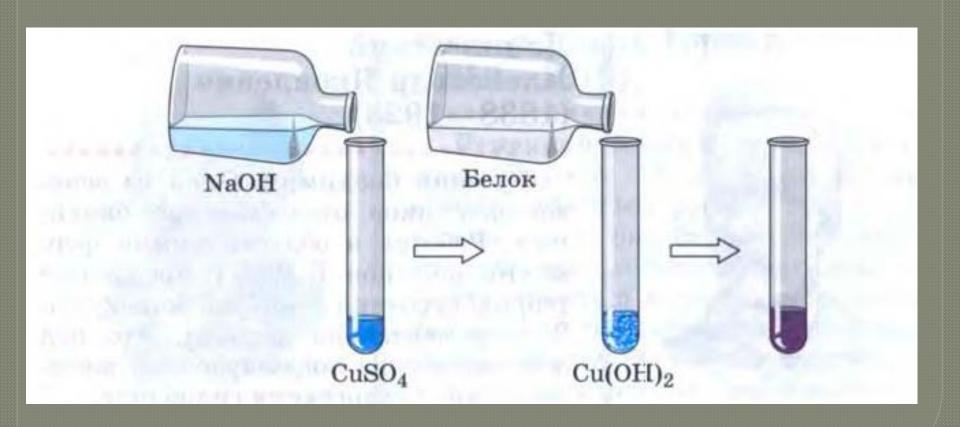

На уровне третичной структуры существуют ферменты, антитела.

Третичная структура

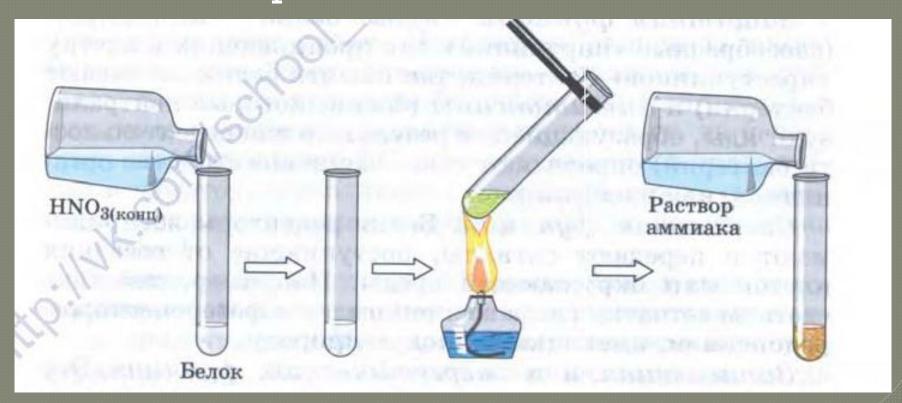
Это одна из самых сложных глобул, которую образуют белки. Строение и функции белков подобного плана очень многогранны и специфичны. Это несколько (в некоторых случаях десятки) крупных и мелких полипептидных цепей, которые формируются независимо друг от друга. Но затем за счет тех же взаимодействий, что мы рассматривали для третичной структуры, все эти пептиды скручиваются и переплетаются между собой. Таким образом получаются сложные конформационные глобулы, которые могут содержать и атомы металлов, и липидные группировки, и углеводные. Примеры таких белков: ДНКполимераза, белковая оболочка табачного вируса, гемоглобин и


Четвертичная структура

Денатурация – осаждение (свертывание) белков при нагревании, под действием сильных кислот или оснований, солей тяжелых металлов или других реагентов.


- Изменение во вторичной и третичной структуре белка.
- Первичная структура сохраняется.
- Большинство белков сворачивается при температуре до 100°C.

Под действием ферментов, а также водных растворов кислот или щелочей происходит разрушение первичной структуры белка в результате его гидролиза по пептидным связям. Гидролиз приводит к образованию более простых белков и аминокислот.


Биуретовая реакция.

При действии на белки свежеполученного осадка гидроксида меди (II) в щелочной среде возникает фиолетовое окрашивание.

Ксантопротеиновая реакция.

При действии на белки концентрированной азотной кислотой образуется белый осадок, который при нагревании желтеет, а при добавлении водного раствора аммиака становится оранжевым.

Применение:

- в качестве пищевых добавок
- лекарственные средства;
- промышленность;
- многие другие.

