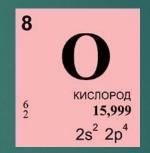
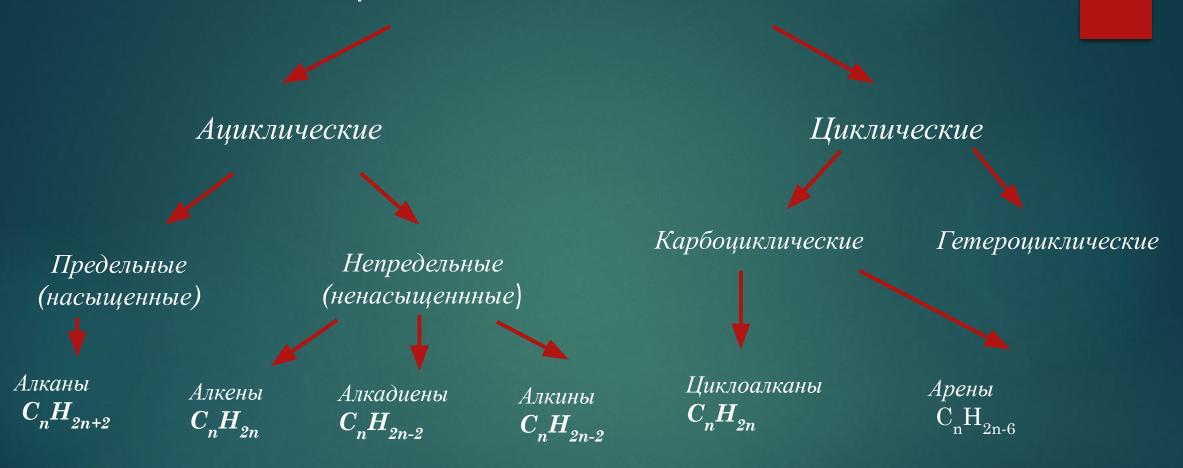

Классификация углеводородов


Подготовила
Ученица 10 класса
Зарикова Мария
Учитель Василенко Е.Ф.
МОУ Катуаровская СОШ

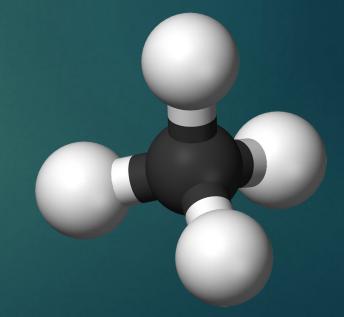
Классификацию веществ можно провести по любому признаку: по составу, свойству и т.д. Но А.М.Бутлеров посчитал, что первоосновой всех свойств является химическое строение вещества.

Любое органическое вещество состоит из углерода, водорода и кислорода. Но именно углерод образовывает цепочки различной длины и конфигурации. Такие цепочки называют «углеродными скелетами».



Бутлеров А.М.

Органические вещества

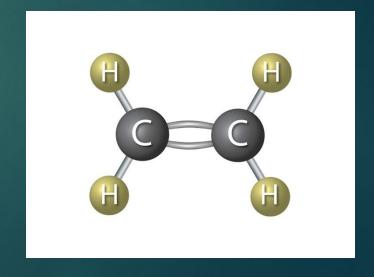


Алканы

Алка́ны (также насыщенные углеводороды, парафины) — <u>ациклические углеводороды</u> линейного или разветвлённого строения, содержащие только <u>простые связи</u> и образующие <u>гомологический ряд</u> с общей формулой $C_n H_{2n+2}$. (суффикс –ан)

Каждый атом углерода находится в sp3 – гибридизации. Форма молекулы в виде тетраэдра с углом $109,5^{\circ}$. Связь образуется посредством перекрывания гибридных орбиталей, причем максимальная область перекрывания лежит в пространстве на прямой, соединяющей ядра атомов. Это наиболее эффективное перекрывание, поэтому σ -связь считается наиболее прочной.

Для алканов свойственна изомерия углеродного скелета. Предельные соединения могут принимать различные геометрические формы, сохраняя при этом угол между связями. Количество изомеров возрастает с увеличением роста углеродной цепи. Например у бутана известно 2 изомера:



Алкены

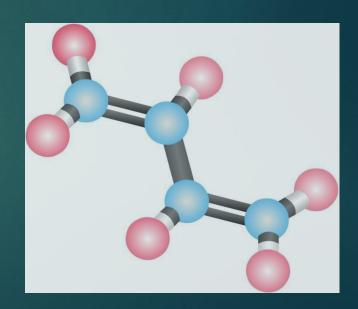
Aлкены — ациклические углеводороды, содержащие в молекуле помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле C_nH_{2n} . Свое второе название — <u>олефины</u> — алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров — масел. (суффикс –ен)

Все атомы <u>углерода</u> находятся в sp^2 – <u>гибридизации</u>; атомы находятся в плоскости, образуя угол 120 °C. Негибридизованные p-орбитали находятся над и под плоскостью молекулы, образуя π – связь. Эта связь менее прочная, поэтому боковое перекрывание не очень эффективно, чем осевое.

Для алкенов также характерна изомерия.

Алкадиены

Алкадиены — непредельные углеводороды, в состав которых входят две двойные связи. Общая формула алкадиенов — $C_n H_{2n-2}$


В зависимости от взаимного расположения кратных связей, диены подразделяются на три группы:

- сопряжённые диены, в которых двойные связи разделены одинарной (1,3-диены)
- $\underline{Aллены}\ c\ \underline{\kappa v m v n u p o в a н н ы м u}\ d в o й н ы м u\ c в я з я м u\ (1,2-d u e н ы)$
- диены с изолированными двойными связями, в которых двойные связи разделены несколькими одинарными.

Строение алкинов.

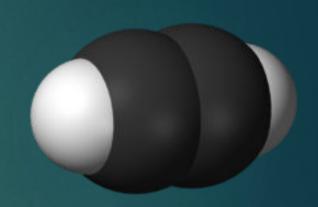
π-электронные облака двойных связей перекрываются между собой, образуя единое π-облако. В сопряженной системе электроны делокализованы по всем атомам углерода:

Чем длиннее молекула, тем она более устойчива.

Алкины

Алкины – это непредельные углеводороды, молекулы которых содержат тройную связь. Общая формула – $C_n H_{2n-2}$.

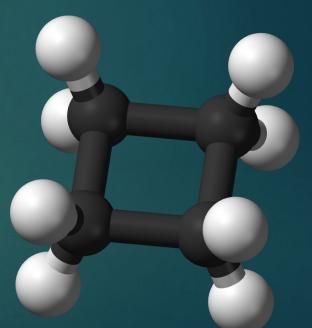
Строение алкинов.


Атомы <u>углерода</u>, которые образуют тройную связь, находятся в sp-<u>гибридизации</u>. σ -связи лежат в плоскости, под углом 180 °C, а π -связи образованы путем перекрывания 2x пар негибридных орбиталей соседних атомов углерода.

Изомерия алкинов.

Для алкинов характерна изомерия углеродного скелета, изомерия положения кратной связи.

Пространственная изомерия не характерна.


Циклоалканы

Циклоалканы, также полиметиленовые углеводороды, нафтены, цикланы, или циклопарафины — циклические насыщенные <u>углеводороды</u>, по химическим свойствам близки к <u>предельным</u> <u>углеводородам</u>. Входят в состав <u>нефти</u>.

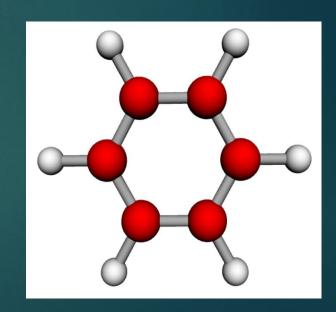
K циклоалканам относят предельные углеводороды с общей формулой $C_n H_{2n}$, имеющие циклическое строение. Названия циклоалканов строятся из названий соответствующих алканов с добавлением приставки цикло-Для циклоалканов характерны следующие виды изомерии:

- Изомерия углеродного скелета;
- Пространственная;
- Межклассовая изомерия с алкенами.

Все атомы углерода в молекулах циклоалканов имеют sp^3 -гибридизацию. Однако величины углов между гибридными орбиталями в <u>циклобутане</u> и особенно в <u>циклопропане</u> не $109^{\circ}28'$, а меньше из-за геометрии, что создаёт в молекулах напряжение, поэтому малые циклы очень реакционноспособны. Циклопропан применяют для <u>наркоза</u>, но его применение ограничено из-за взрывоопасности.

Арены

Арены (ароматические углеводороды) — соединения, в молекулах которых содержится одно или несколько бензольных колей — циклических групп атомов <u>углерода</u> со специфическим характером связей.


Oбщая формула аренов – $C_n H_{2n ext{-}6}$

Изомерия аренов.

Арены можно разделить на 2 группы:

- производные бензола:
- конденсированные арены

Для аренов характерна структурная изомерия, которая объясняется взаимным расположением заместителей в кольце.

Гетероциклические вещества

Гетероциклические соединения (гетероциклы) — <u>органические соединения</u>, содержащие циклы, в состав которых наряду с <u>углеродом</u> входят и атомы других элементов. Могут рассматриваться как <u>карбоциклические соединения</u> с гетерозаместителями (<u>гетероатомами</u>) в цикле. Наиболее разнообразны и хорошо изучены ароматические азотсодержащие гетероциклические соединения. Предельные случаи гетероциклических соединений — соединения, не содержащие атомов углерода в цикле, например, <u>пентазол</u>.

Производство и применение.

Некоторые гетероциклические соединения получают из каменноугольной смолы (пиридин, хинолин, акридин и пр.) и при переработке растительного сырья (фурфурол). Многие природные и синтетические гетероциклические соединения — ценные красители (индиго), лекарственные вещества (хинин, морфин, акрихин, пирамидон). Гетероциклические соединения используют в производстве пластмасс, как ускорители вулканизации каучука, в кинофотопромышленности.

Спасибо за внимание