Проверка темы: «s-Элементы» (10 минут)

Напишите уравнения реакций, отвечающие следующей схеме превращений:

$$Mg \xrightarrow{H_2SO_4 \text{ (конц.)}} X \rightarrow Mg(OH)_2 \rightarrow$$
 $\rightarrow Mg(NO_3)_2 \xrightarrow{t} Y$

Вариант 2

Вариант 2

$$HNO_3 (1\%) \xrightarrow{t} X \xrightarrow{300^o C} BaO \longrightarrow Ba(OH)_2$$

Проверка темы: «s-Элементы» (10 минут)

Вариант 1

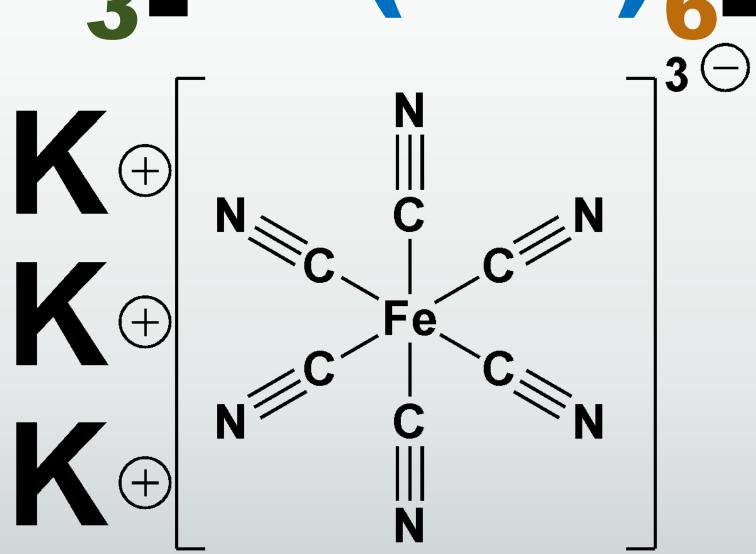
$$\operatorname{Mg} \xrightarrow{H_2SO_4 \text{ (КОНЦ.)}} X \to \operatorname{Mg(OH)}_2 \to \operatorname{Mg(NO}_3)_2 \xrightarrow{t} Y$$

- 1) $4Mg + 5H_2SO_4$ (KOHIL) = $4MgSO_4 + H_2S + 4H_2O$
- 2) $MgSO_4 + 2NaOH = Mg(OH)_2 \downarrow + Na_2SO_4$
- 3) $Mg(OH)_2 + 2HNO_3 = Mg(NO_3)_2 + 2H_2O$
- 4) $2Mg(NO_3)_2 = 2MgO + 4NO_2 + O_2$

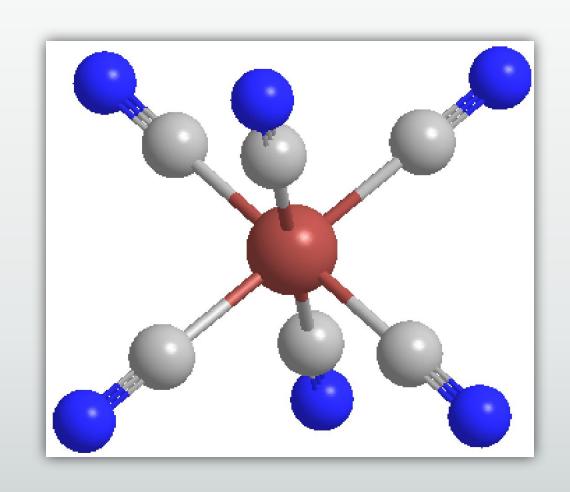
Проверка темы: «s-Элементы» (10 минут)

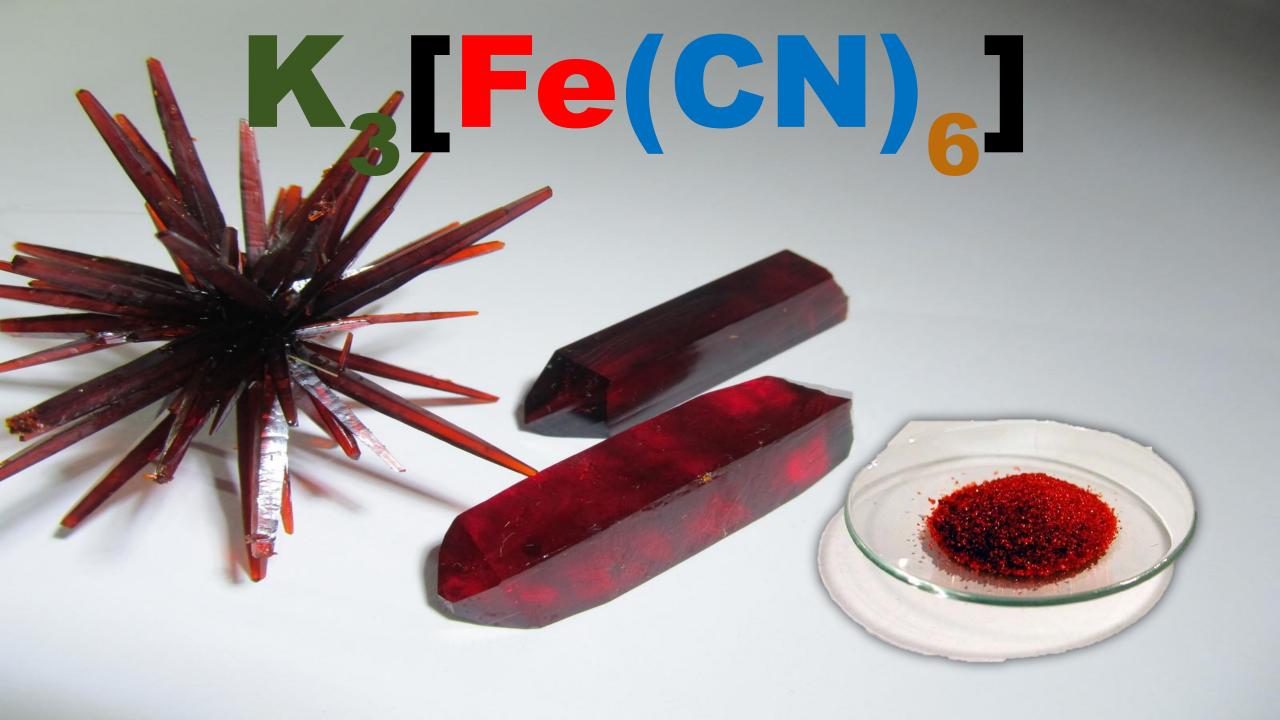
$$\mathbf{Ba} \xrightarrow{HNO_3 (1\%)} \mathbf{X} \xrightarrow{t} \mathbf{Y} \xrightarrow{300^o C} \mathbf{Ba(OH)_2}$$

- 1) 4Ba + 10HNO_{3 (оч. разб.)} = 4Ba(NO₃)₂ + NH₄NO₃ + 3H₂O
- 2) $Ba(NO_3)_2 = Ba(NO_2)_2 + O_2$
- 3) $2Ba(NO_2)_2 = 2BaO + 4NO_{(или N_2)} + O_2$
- 4) BaO + $H_2O = Ba(OH)_2$


Комплексообразование

Учитель химии, п.д.о.

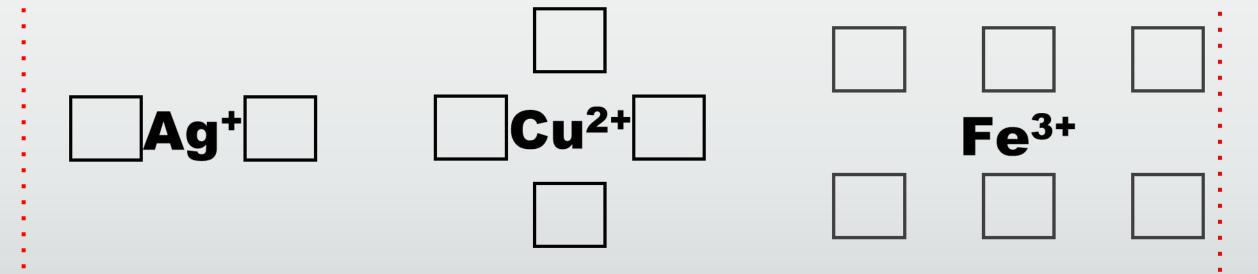

Комплексы – сложные вещества, содержащие центральный атом, связанный с несколькими молекулами: или ионами (лигандами). Самый многочисленный класс неорганических соединений!



K₃[Fe(CN)₆]

K₃[Fe(CN)₆]

K₃[Fe(CN)₆]


Гексацианоферрат (III) калия (красная кровяная соль)

- Исчерпывающего определения комплекса дать нельзя!
- ✓ Чаще всего в роли комплексообразователя (центрального атома) выступает электроположительная частица (электрофил, акцептор электронов), способная связывать донорные молекулы или ионы.
- ✔ Наиболее типичные комплексообразователи ионы *d* и *f* металлов, Al, Be.

- ✓ Комплексообразователь (М___)_n акцептор электронных пар, n координационное число
- ✓ Лиганд ↑↓ L— донор электронной пары

$$(M \sqcup)_n + \uparrow \downarrow \perp \subseteq [M (\uparrow \downarrow \perp)_n]$$

✓ Наиболее характерные координационные числа – 2, 4, 6.

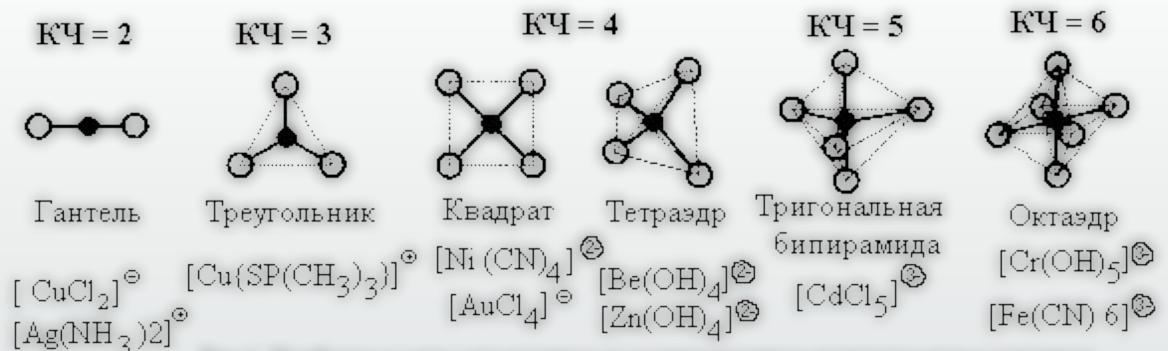
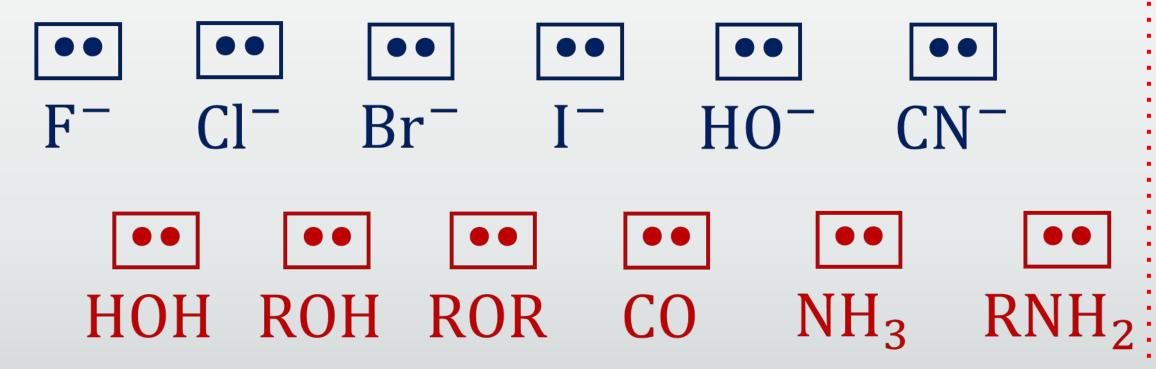



Рис 1. Наиболее распространенные координационные полиздры при различных координационных числах. Под названием полиздров приведены примеры комплексных частиц с таким строением.

✓ Обычно лигандами являются анионы или молекулы, содержащие неподеленные электронные пары или подвижные π-связи.

Один и тот же лиганд может образовывать несколько связей, т.е. быдь полидентатным

 $H_2\ddot{N}CH_2CH_2\ddot{N}H_2$ молекула этилендиамина

-00C-C00

анион щавелевой кислоты

H₂NCH₂COÖ

анион глицина

✔ Связи во внутренней сфере комплекса ковалентные! Исходя из суммарного заряда внутренней сферы комплексы подразделяются на:

катионные [Cu(NH₃)₄]²⁺

анионные [Fe(CN)₆]³⁻

нейтральные [Fe(CO)₅]⁰

катионные [Cu(NH₃)₄]²⁺

[Cu(NH₃)₄]Cl₂ [Cu(NH₃)₄]SO₄ [Cu(NH₃)₄](NO₃)₂ анионные [Fe(CN)₆]³⁻

 $K_3[Fe(CN)_6]$ $Ca_3([Fe(CN)_6])_2$ $AI[Fe(CN)_6]$

нейтральные $[Fe(CO)_5]$ $[Pt(NH_3)_2CI_2]$

- ✓ Разные лиганды по-разному связываются с комплексообразователем: одни прочно, другие нет – этот факт объясняется поляризуемостью, и называется ЖМКО.
- ✓ Чем меньше радиус и число электронов у частицы, тем менее она поляризуема, тем она ЖЕСТЧЕ, и наоборот...

Na⁺, K⁺, Ca²⁺, Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Pb²⁺, Hg²⁺

увеличение мягкости

F', OH', H₂O, Cl', Br', l', RCOO', NR₃, RSH, CN', CO

Металлы жизни

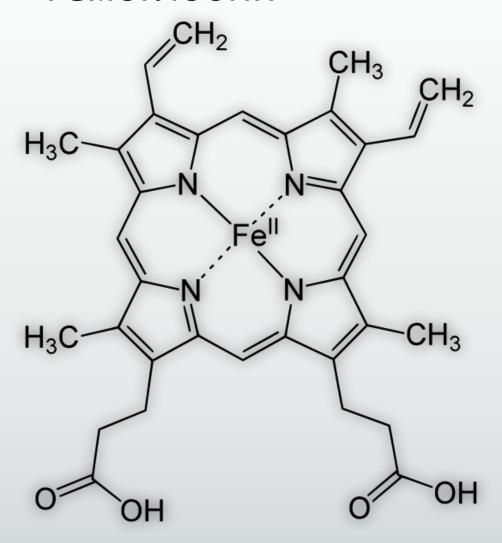
Токсиканты

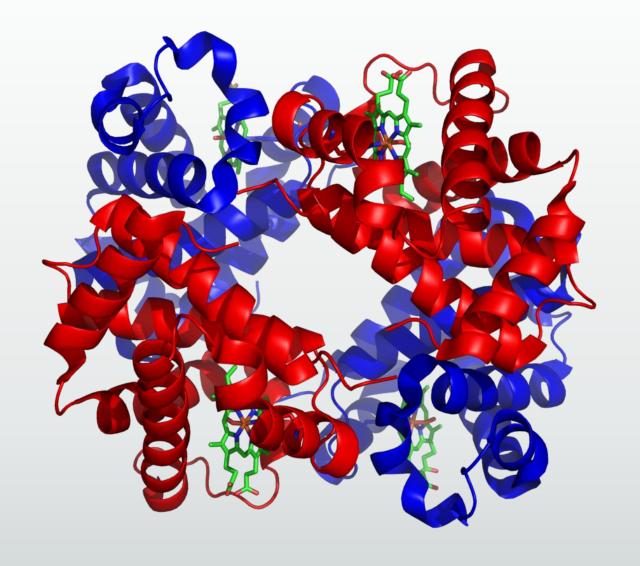
Na⁺, K⁺, Ca²⁺, Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Pb²⁺, Hg²⁺

увеличение мягкости

F', OH', H₂O, Cl', Br', I', RCOO', NR₃, RSH, CN', CO

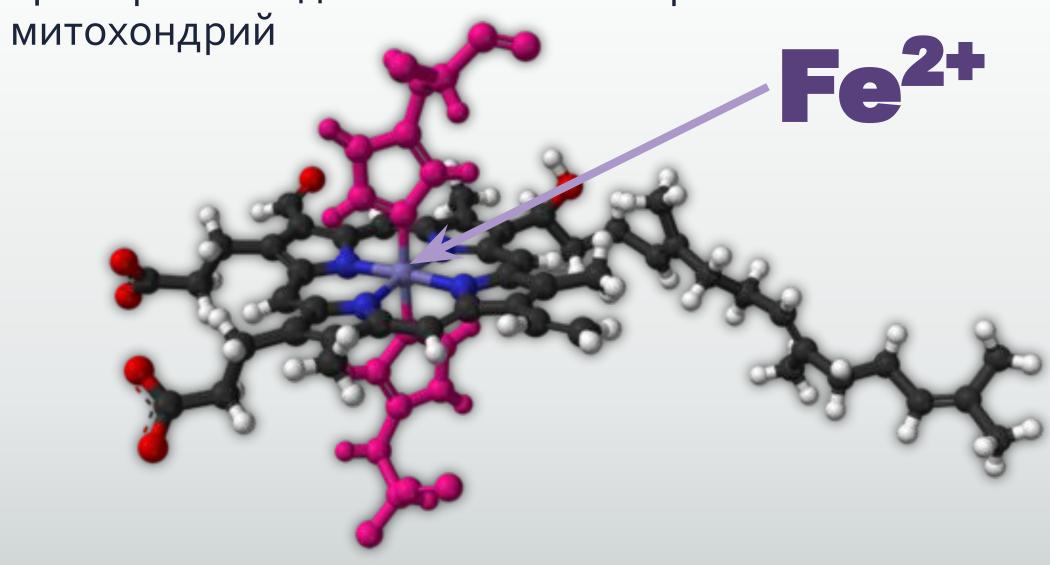
белковые группы

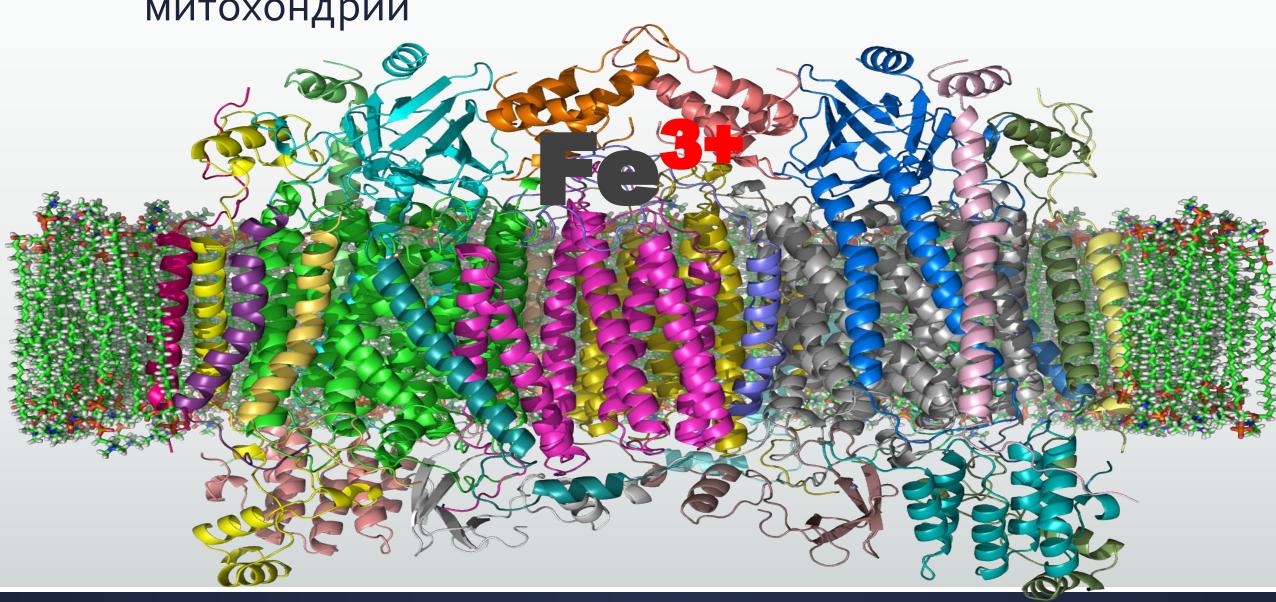


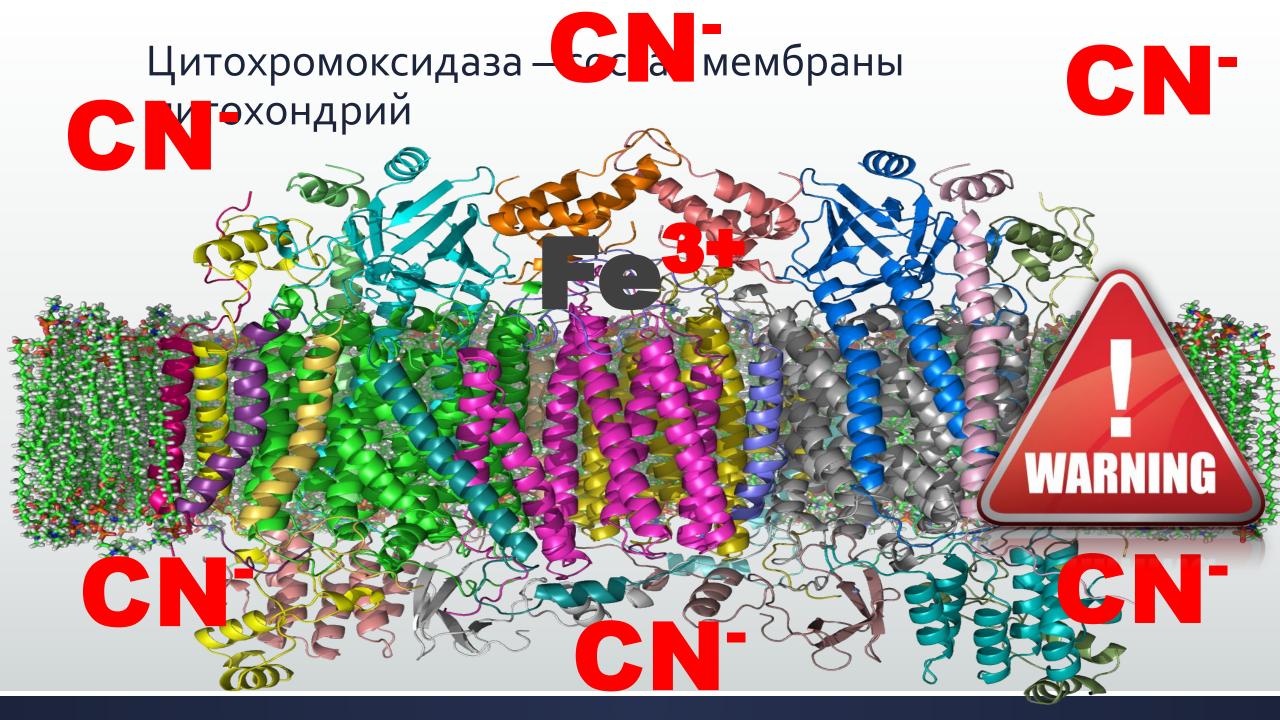

Каким ядом был отравлен Джоффри Баратеон, если его венозная кровь, оттекающая от тканей и органов, приобрела алый, артериальный цвет?

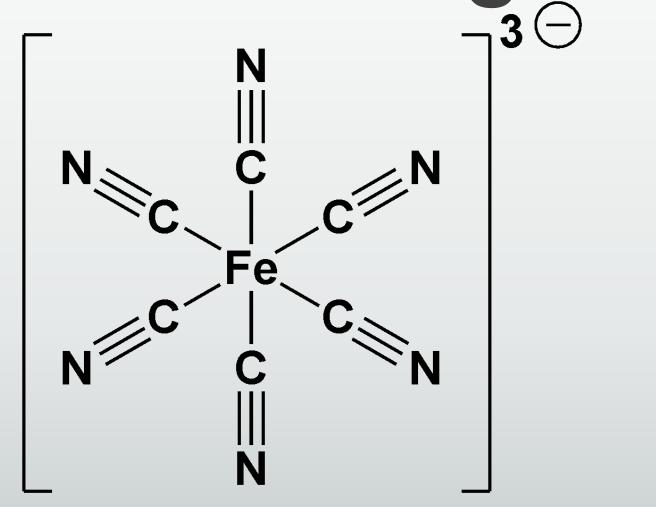
Ответ: цианидами.

Проникая в кровеносное русло, цианиды очень скоро оказываются в клеточных структурах, прежде всего в митохондриях, где протекают ферментативные процессы тканевого окисления (потребления клетками кислорода).


Гемоглобин




Цитохромоксидаза – состав мембраны



Цитохромоксидаза — состав мембраны митохондрий

[Fe(CN)₆]³⁻

Как называть?

- 1) В названии КС первым указывают анион, затем катион.
- 2) Название комплексной части начинают с указания состава внутренней сферы. Во внутренней сфере прежде всего называют лиганды анионы, прибавляя к их латинскому названию окончание «о». Например: Cl⁻ хлоро, CN⁻ циано, SCN⁻ тиоцианато, NO₃ нитрато, SO₃ сульфито, OH⁻ гидроксо. При этом пользуются терминами: для координированного аммиака аммин, для воды аква, для оксида углерода(II) карбонил.
- 3) Число монодентатных лигандов указывают греческими числительными: 1 моно (часто не приводится), 2 ди, 3 три, 4 тетра, 5 пента, 6 гекса. Для полидентатных лигандов (например, этилендиамин, оксалат) используют бис-, трис-, тетракис- и т. д.

Как называть?

- 4) Затем называют комплексообразователь, используя корень его латинского названия и окончание -ат, после чего римскими цифрами указывают (в скобках) степень окисления комплексообразователя.
- 5) После обозначения состава внутренней сферы называют внешнюю сферу.
- 6) В названии нейтральных комплексных частиц комплексообразователь указывается в именительном падеже, а степень его не указывается, так как она однозначно определяется, исходя из электронейтральности комплекса.

Примеры:

 $K_3[Fe(CN)_6]$

гексацианоферрат(III) калия

 $(NH_4)_2[PtCl_4(OH)_2]$

дигидроксотетрахлороплатинат(IV) аммония

[Cr(H₂O)₃F₃]

трифторотриаквахром

Примеры:

[Co(NH₃)₃CI(NO₂)₂]

динитритохлоротриамминкобальт

[Pt(NH₃)₄Cl₂]Cl₂

хлорид дихлоротетраамминплатины(IV)

[Li(H₂O)₄]NO₃

нитрат тетрааквалития

К4[Fe(CN)6] НАЗВАНИЯ КОМПЛЕКСОВ ПО РАЗЛИЧНЫМ НОМЕНКЛАТУРАМ 4[()6] тривиальное – желтая кровяная соль, два полусистематических – железосинеродистый калий, ферроцианид калия два систематических по IUPAC – тетракалийгексацианоферрат(II), гексацианоферрат(II) (тетра)калия, а также «гибридное» – гексацианоферроат калия. К3[Со(NO2)6] тривиальное – соль Фишера, полусистематическое – кобальтинитрит калия, четыре систематических по IUPAC – трикалийгексанитритокобальтат(III), гексанитритокобальтат(III) (три)калия, трикалийгекса [триоксонитрат(III)] кобальтат(III), гекса[триоксонитрат(III)] кобальтат(III) трикалия, «гибридное» гексанитритокобальтиат калия. [Pt(NH₃)₅Cl]Cl₃ (3)₅ тривиальное – соль Чугаева, полусистематическое – хлорид пентамминхлороплатины, два систематических систематических по IUPAC – (три)хлорид пентамминохлороплатины пентамминохлороплатины(IV), пентамминхлороплатина(IV)(три)хлорид, «гибридное» пентамминхлороплатехлорид.

Примеры комплексных соединений различных цветов

	Cr ³⁺	Fe ²⁺	Fe ³⁺	Co ²⁺	Cu ²⁺	Al ³⁺
H ₂ O	[Cr(H ₂ O) ₆] ³⁺ Бледно- зелёный	[Fe(H₂O)₆]²⁺ Бледно- зелёный	[Fe(H₂O)₆]³⁺ Жёлто- коричневый	[Co(H ₂ O) ₆] ²⁺ Розовый	[Cu(H ₂ O) ₆] ²⁺ Серо-голубой	[AI(H₂O)₆]³⁺ Бесцветный
ОН - конц.	[Cr(OH)₆]³⁻ Бледно- зелёный	[Fe(H₂O)₄(OH)₂] Светло-зелёный	[Fe(H ₂ O) ₃ (OH) ₃] Коричневый	[Co(H ₂ O) ₄ (OH) ₂] Голубой	[Cu(H ₂ O) ₄ (OH) ₂] Синий	[Al(OH)₄] - Бесцветный
NН ₃ конц.	[Cr(NH ₃) ₆] ³⁺ Бледно- зелёный			[Co(NH ₃) ₆] ²⁺ Жёлтый	[Cu(NH ₃) ₄] ²⁺ Темно-синий	[AI(H₂O)₃(OH)₃] Белый
CO ₃ ²⁻		FeCO ₃ Светло-зелёный	[Fe(H ₂ O) ₃ (OH) ₃] Коричневый	СоСО ₃ Розовый	СиСО ₃ Голубой	

BEP/

Минералы

Берилл Al₂[Be₃(Si₆O₁₈)]

Be + 2NaOH + 2H₂O = Na₂[Be(OH)₄] + H₂↑ тетрагидроксобериллат

BeO + 2NaOH + $H_2O = Na_2[Be(OH)_4]$

BeO + 2NaOH
$$\stackrel{t}{\rightarrow}$$
 Na₂BeO₂ + H₂O бериллат натрия

 $Na_2BeO_2 + 2H_2O = Na_2[Be(OH)_4]$

 $Be(OH)_2 + 2NaOH = Na_2[Be(OH)_4]$