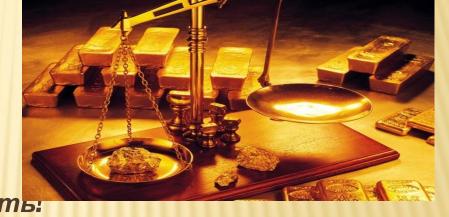
БОЛЬШОЕ ПУТЕШЕСТВИЕ В МИР

МБОУ СОШ N° 11 г. Струнино Кириллова О.П.



ИСТОРИЯ МЕТАЛЛОВ

Металл - métallon (от metalléuō – выкапываю, добываю из земли)

Металлы, известные в древности - золото, серебро, медь, олово, свинец, железо, ртуть.

Семь металлов создал свет
По числу семи планет:
Дал нам космос на добро
Медь, железо, серебро,
Злато, олово, свинец...
И спеши, мой сын, узнать:
Всем им ртуть — родная мать:

Меди была посвящена Венера, железу— Марс, серебру— Селена (Луна), золоту— Гелиос

(Солнце), олову Юпитер, свинцу — Сатурн и ртути — Меркурий.

ЭВОЛЮЦИЯ ПРЕДСТАВЛЕНИЙ О МЕТАЛЛАХ

алхимические представления: металлы – вещества сложные, состоящие из «начала металличности» (ртути) и «начала горючести» (серы); металлы зарождаются в земных недрах под влиянием лучей планет и постепенно крайне медленно совершенствуются, превращаясь в серебро и золо

8 век - металлы состоят из земли и «начала горючести» – флогистона.

1.В.Ломоносов: металл - «светлое тело, которое ковать можно»; известно 6 металлов

конце 18 в. А.Л. Лавуазье опроверг гипотезу флогистона и показал, что металлы – вещества; известно уже 17 металлов (Sb, Ag, As, Bi, Co, Cu, Sn, Fe, Mn, Hg, Mo, Ni, Au, Pt, Pb, W, Zn

19 век - открыты спутники Pt, получены путём электролиза некоторые щелочные и щёлочноземельные

металлы, положено начало разделению редкоземельных металлов

конец 19 -20 век – получение радиоактивных металлов; разработаны новые методы получения металлов,

металлы широко применяются в промышленности

МЕТАЛЛЫ В ПРИРОДЕ

Содержание металлов в земной коре

алюминия — 8,2% железа — 4,1% кальция — 4,1% натрия — 2,3% магния — 2,3% калия - 2,1 %

титана — 0.56%

В природе металлы встречаются в различном виде:

- в самородном состоянии: серебро, золото, платина, медь, иногда ртуть
- в виде оксидов: магнетит Fe_3O_4 , гематит Fe_2O_3 и др.
- в виде смешанных оксидов: каолин Al₂O₃ 2SiO₂ 2H₂O, алунит (Na,K)₂O AlO₃ 2SiO₂ и др.
- различных солей:

сульфидов: галенит PbS, киноварь HgS,

хлоридов: сильвин КС1, галит NaCl, сильвинит КСl \cdot NaCl, карналлит КСl \cdot MgCl $_2$ \cdot 6H $_2$ O, сульфатов: барит BaSO $_4$, ангидрид Ca8O4 фосфатов: апатит Ca3(PO4)2, карбонатов: мел, мрамор CaCO3, магнезит MgCO3.

Многие металлы часто сопутствуют основным природным минералам: скандий входит в состав оловянных, вольфрамовых руд, кадмий — в качестве примеси в цинковые руды, ниобий и тантал — в оловянные.

Железным рудам всегда сопутствуют марганец, никель, кобальт, молибден, титан, германий, ванадий.

МЕТАЛЛИЧЕСКИЕ РУДЫ

Руда – это природное минеральное образование, содержащее металлы в таких соединениях и концентрациях, при которых их промышленное использование технически возможно и экономически целесообразно.

По качеству и количеству металла руды деля

- -промышленные,
- -непромышленные.

По числу содержащихся в руде металлов их дел

- -монометаллические (простые),
- -полиметаллические (комплексные).

По содержанию металла выделяют руды::

- богатые,
- _ -средние
- -бедные.

По форме нахождения металла:

- п на самородные, содержащие металлы в свободном состоянии;
- окисленные, в которых металлы присутствуют в форме различных кислородных соединений (оксидов, гидроксидов, солей многоосновных кислородных кислот)

СПОСОБЫ ПОЛУЧЕНИЯ МЕТАЛЛОВ

- Пирометаллургические способы применение высоких температур в процессе восстановления металла
- а) карботермический восстановление оксидов металлов углеродом или оксидом углерода CO при высоких

температурах:

Fe₂O₃ + 3CO ↑ 2Fe + 3CO₂ ↑.

б) металлотермический - применение в качестве восстановителей более активные металлы при высоких

температурах (Al, Mg, Ca и др.). Этим методом получают титан, уран, ванадий:

TiCl₄ + 2Mg Ti + 2MgCl₂.

■ Электрометаллургический способ - применение электрической энергии для восстановления металлов. Такие активные металлы, как К, Na, Ca, Mg, AI и др., получают электролизом расплавов их соединений.

Гидрометаллургический способ - получение металлов из руд с помощью водных растворов

специальных реагентов (кислот, щелочей, солей), котор руде состояния в водорастворимое. Далее металь восстановлением его более активным металлом, либ

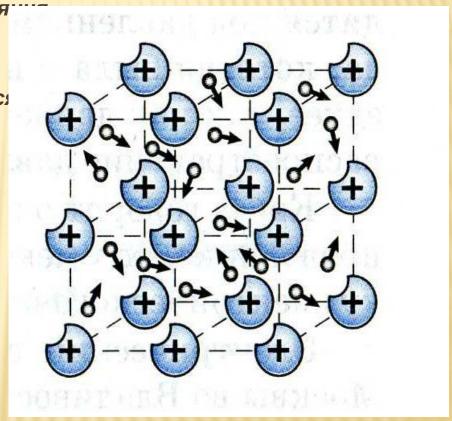
ическими соединениями.

 $04(ж) + H_2O(ж).$

ПОЛОЖЕНИЕ МЕТАЛЛОВ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ Д.И.

металлы составляют 80% от всех элементов. Они находятся в 1-3 группах главных подгруппах и в побочныХ

подгруппах всех восьми групп.


Условная граница между элементами металлами и элементами-неметаллами проходит по диагонали В(бор)

Si(кремний)-As(мышьяк)-Te(теллур)-At(астат). Справа вверх от диагонали находятся элементынеметаллы

СТРОЕНИЕ АТОМОВ МЕТАЛЛОВ

Согласно теории металлического состоя металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов.

ФИЗИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

Металлический блеск - результат отражения световых лучей от при обычных электронов, находящихся в межатомном пространстве.

Твердость. Все металлы, кроме ртути, условиях твердые вещества. Однако это свойство различно у каждого из металлов.

Пластичность металлов обусловлена тем, что под внешним воздействием одни слои ион атомов в кристаллах легко смещаются, как бы скользят, по отношению к другим без разрыва связей между ними.

Теплопроводность

металлов тоже вызвана высокой подвижностью свободных электронов: сталкиваясь с колеблющимися в узлах решетки ионами, электроны обмениваются с ними энергией.

Электропроводность металлов обусловлена присутствием в их кристаллических решетках подвижных электронов, которые направлено перемещаются под действием

электрического поля.

КЛАССИФИКАЦИЯ МЕТАЛЛОВ ПО ЦВЕТУ

Черные металлы

- -темно-серый цвет
- -большая плотность
- -высокая температура плавления
- -высокая твердость.

Типичным представителем черных металлов является железо.

Цветные металлы

- -характерная окраска: красная, желтая
- -большая пластичность
- -малая твердость
- -относительно низкая температура плавления.

Типичным представителем цветных металлов является медь.

КЛАССИФИКАЦИЯ МЕТАЛЛОВ ПО ПЛОТНОСТИ

Легкие (плотность не более 5 г/см) литий, натрий, калий, магний, кальций, цезий, алюминий, барий.

Самый легкий металл литий, плотность 0.534 г/см3.

Тяжелые (плотность более 5 г/см3). цинк, медь, железо, олово, свинец, серебро, золото, ртуть и др.

Самый тяжелый металл — осмий, плотность 22,5 г/см3.

КЛАССИФИКАЦИЯ МЕТАЛЛОВ ПО ТВЕРДОСТИ:

Мягкие

режутся даже ножом (натрий, калий, индий);

Твердые

металлы сравниваются по твердости с алмазом, твердость которого равна 10. Хром — самый твердый металл, режет стекло.

КЛАССИФИКАЦИЯ МЕТАЛЛОВ ПО ТЕМПЕРАТУРЕ ПЛАВЛЕНИЯ

Легкоплавкие

(температура плавления до 1539°С). К легкоплавким металлам относятся: ртуть — температура плавления —38,9°С; галлий — температура плавления 29,78°С; цезий — температура плавления 28,5°С; и другие металлы.

Тугоплавкие

(температура плавления выше 1539 С). К тугоплавким металлам относятся: хром — температура плавления 1890° С; молибден — температура плавления 2620°С; ванадий — температура плавления 1900°С; тантал — температура плавления 3015°С; и многие другие металлы. Самый тугоплавкий металл вольфрам — температура плавления 3420°С.

СПЛАВЫ

Сплавы – это материалы с характерными свойствами, состоящие из двух или более компонентов, из которых один металл.

Представители сплавов:

- **Бронза-**сплав меди с другими элементами, в основном металлами. В зависимости от состава различают: оловянную бронзу, алюминиевую бронзу, свинцовую бронзу, кремниевую бронзу. Применяют для изготовления частей машин и для художественных отливок.
- **Латунь-**сплав меди с цинком. Обладает высокой пластичностью. Используют для изготовления приборов, деталей машин, предметов домашнего обихода.
- **Нихром**-сплав никеля, хрома, железа и марганца, обладает большим электрическим сопротивлением и жаропрочностью, поэтому его применяют для изготовления электрических нагревательных приборов.
- Припой «третник»- легкоплавкий сплав, состоит из олова и свинца. Используют при паянии.
- Победит-сплав углерода, вольфрама, кобальта. По твердости он близок к алмазу, применяют в металлообработке и при бурении горных пород.
- **Дюралюминий**-сплав алюминия, магния, меди и марганца. Очень прочный и легкий сплав. По прочности он равен стали, но в три раза легче её. Применяют в самолетостроении.
- Мельхиор-сплав, состоящий из меди и никеля, похож по внешнему виду на серебро. Используется для изготовления недорогих столовых и художественных изделий.
- Чугун-сплав на основе железа, углерода, марганца, кремния, фосфора, серы. Применяется для изготовления
 массивных деталей.
- Сплав из олова и индия используют для спайки стекла и металла.
- Сплавы рения с танталом и вольфрамом самые жаростойкие из всех известных.
- **Легкие сплавы на основе титана** сохраняют прочность и коррозийную устойчивость при повышенных температурах и давлениях. Из них изготардивают отпельные части реактивных двигателей, корпуса атомных подводных лодок.

ХИМИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

Электрохимический ряд напряжения металлов Li, K, Ba, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Co, Sn, Pb, (H), Cu, Hg, Ag, Au

Общие свойства металлов

- Взаимодействие с кислородом воздуха:
 - А) легко взаимодействуют щелочные и щелочноземельные металлы, окисляются при обычной температуре;
- Б) менее активные металлы медленно окисляются при обычной температуре или при нагревании;
- В) золото, медь, серебро и платиновые металлы не окисляются ни при каких условиях.
- Взаимодействие с водой.
- A) щелочные и щелочноземельные металлы легко реагируют с водой при обычной температуре с выделением водорода и образованием гидроксида;
- Б) менее активные металлы взаимодействуют с водой только в раскаленном виде с выделением водорода и образованием оксида.
- **Взаимодействие с неметаллами.**
- А) с галогенами; Б) с серой; В) с азотом; Г) с углеродом; Д) с водородом.

ХИМИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

Взаимодействие с кислотами.

- А) металлы, стоящие в ряду напряжений левее водорода, вытесняют его из растворов кислот, кроме щелочных металлов;
- Б) металлы, стоящие правее водорода с кислотами не реагируют, растворяются в «царской водке»;
- В) реакция идет, если в реакции металла с кислотой образуется растворимая соль;
- Г) концентрированная серная кислота и азотная кислота любой концентрации реагирует с металлами по-особому, при этом водород не образуется.

Взаимодействие с солями.

- А) каждый металл вытесняет из растворов солей другие металлы, находящиеся правее него в ряду напряжений, и сам может быть вытеснен металлами, расположенными левее;
- Б) реакция идет при образовании растворимой соли;
- В) правило не распространяется на щелочные металлы.

ПРИМЕНЕНИЕ МЕТАЛЛОВ

ПРИМЕНЕНИЕ МЕТАЛЛОВ

