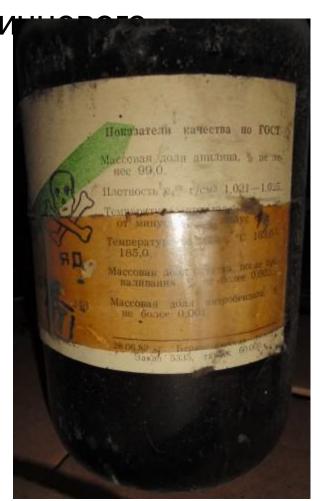


# ПРИМЕНЕНИЕ АНИЛИНА





## История создания


- 1840 г. Ю.Ф.Фрицше обнаружил, что при нагревании с щелочью синяя окраска индигоисчезает и образуется вязкая масса коричневого цвета. Очистив это в-во, Фрицше получил быстро желтеющую на воздухе маслянистую жидкость и назвал её анилином.
- Примерно в то же время О.Унфердорбен нагреванием кристаллического индиго получил продукт, который он назвал кристаллином.
- Фридлиб Фердинанд Рунге в продуктах перегонки каменноугольной смолы открыл в-во, названное им кианолом.
- Н.Н.Зинин в 1841 году открыл способ восстановления нитробензола до соответствующего ароматического амина – бензидама.
- 1843 г. Гофман установил, что бензидам, кианол, кристаллин и анилин – одно и то же соединение. Остановились на анилине.

## Общая информация о строении

- Эти структурные формулы показывают, что электронная пара азота втягивается в бензольное кольцо, при этом на атоме азота появляется частичный положительный заряд, основные свойства уменьшаются, в бензольном же кольце электронная плотность увеличивается, наиболее сильно в орто- и параположениях.
- M+ у азота. Стрелками показано смещение электронной плотности.

#### Физические свойства

- □ Анилин бесцветная маслянистая жидкость.
- При окислении на воздухе становится светло-кори цвета.
- □ Немного тяжелее воды, малорастворим в ней.
- □ Хорошо растворяется в этаноле и бензоле.
- Температура кипения 174 С.
- □ Проявляет слабые основные свойства.
- □ Ядовит.



Нитрование:

C6H5NH2+NaNO2+2HCl [C6H5-N \( \Big) N]+Cl- +NaCl + 2H2O

хлорид диазония Диазосоединения можно выделить в виде кристаллических, легко взрывающихся веществ. Благодаря способности диазониевой группы легко замещаться на другие функциональные группы, эти соединения широко используются в органически синтезах.

При взаимодействии водного p-pa анилина с CaClO2 появляетсяинтенсивное фиолетовое окрашивание.

### Получение

■ В промышленности анилин получают в две стадии. На первой стадии бензол нитруется смесью концентрированной азотной и серной кислот при температуре 50 — 60°С в результате образуется нитробензол. На втором этапе нитробензол гидрируют при температуре 200-300°С в присутствии катализаторов.

Получение C6H5NO2 + 3H2 ? C6H5NH2 + 2H2O.

 Другим способом получение анилина является восстановление нитро соединений-

Реакция Зинина:

C6H5NO2 + 3(NH4)2S & C6H5NH2 + 6NH3 + 3S + 2H2O



Применение

В настоящий момент в мире основная часть (85%) производимого анилина используется для производства метилдиизоционатов (MDI), используемых затем для производства полиуретанов. Анилин также используется при производстве искусственных каучуков (9%), гербицидов (2%) и красителей (2%).

В России он в основном применяется в качестве полупродукта в производстве красителей, взрывчатых веществ и лекарственных средств (сульфаниламидные препараты).





#### Токсические свойства анилина.

Анилин оказывает негативное действие на центральную нервную систему. Вызывает кислородное голодание организма за счет образования метагемоглобина, гемолиза и дегенеративных изменений эритроцитов. При отравлении наблюдается слабость, головная боль, тошнота, посинение губ, ногтей, ушных раковин, учащение пульса.



### Первая помощь при отравлении.

Вывести пострадавшего из очага отравления. Давать вдыхать кислород. Обливать теплой водой. Ввести антидот ( метиленовая синь). Дать сердечно-сосудистые средства, обеспечить покой. Предельно-допустимые концентрации в воздухе 3мг на кубометр, в воде 0,1 мг на литр.



