
## «Строение атома. Состав атомного ядра.»



В XX в. ученые установили, что атом состоит из ядра и движущихся вокруг него электронов. Была разработана теория строения атома.

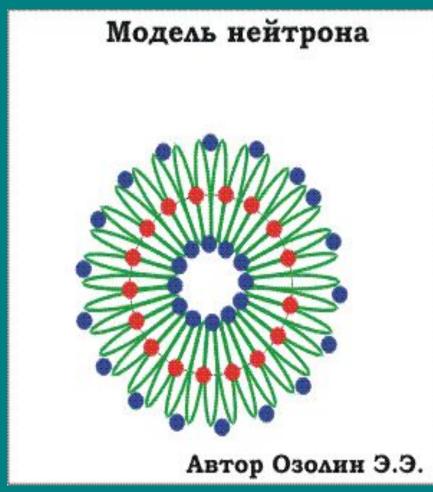


В 1911 году английский ученый Э. Резерфорд предложил "планетарную" модель строения атома. Согласно этой модели, в центре атома находится положительно заряженное ядро, вокруг которого вращаются электроны. Электрон имеет наименьший отрицательный заряд, который был принят за единицу. В целом атом электронейтрален, т.е. не имеет заряда. Положительный заряд ядра равен сумме отрицательных зарядов электронов. Например, если ядро атома имеет заряд +4, то вокруг него движутся 4 электрона, каждый из которых имеет заряд, равный -1.

Было установлено, что заряды ядер атомов химических элементов численно равны их порядковому номеру в периодической системе Д. И. Менделеева. Так был открыт физический смысл порядкового номера элемента. Порядковый номер водорода равен 1, заряд ядра его атома — +1, вокруг его ядра движется один электрон с отрицательным зарядом -1. Порядковый номер элемента гелия — 2, заряд ядра — +2, вокруг ядра его атома движутся два электрона с общим отрицательным зарядом -2.

| јери-<br>оды | Ряды | группы элементов           |                            |                               |                            |                           |                            |                             |                                         |                          | Necco<br>Necco |
|--------------|------|----------------------------|----------------------------|-------------------------------|----------------------------|---------------------------|----------------------------|-----------------------------|-----------------------------------------|--------------------------|----------------|
|              |      | 1 11                       |                            | III                           | IV                         | ٧                         | VI                         | VII                         | VIII                                    |                          | жино           |
|              |      | а б                        | a 6                        | a 6                           | а б                        | а б                       | a 6                        | а б                         | 6                                       | a                        | ě              |
| 1            | 1    | H 1<br>водород<br>1,008    |                            |                               |                            |                           |                            |                             |                                         | He 2                     | к              |
| 2            | 2    | Li 3<br>литий<br>6,941     | Ве 4<br>66РИЛЛИЙ<br>9,0122 | B 5                           | С 6<br>угаврод<br>12.011   | N 7                       | О 8<br>кислород<br>15,999  | F 9 9 18,998                |                                         | Ne 10<br>HEOH<br>20,179  | i.             |
| 3            | 3    | Na 11<br>HAТРИЙ<br>22.99   | Mg 12<br>MATHHIR<br>24,312 | Al 13<br>Алюминий 3<br>26.092 | Si 14<br>кремний<br>28,086 | P 15<br>eoceop<br>30.974  | S 16<br>CEPA<br>32.064     | Cl 17<br>xnop<br>35,453     |                                         | Ar 18<br>APTOH<br>39,948 | 3.46           |
| 4            | 4    | К 19<br>калий<br>39,102    | Са 20<br>кальций<br>40,08  | 21 Sc<br>скандий<br>44,966    | 22 Ti<br>THTAH<br>47,956   | 23 V<br>ванадий<br>50,941 | 24 Cr<br>XPOM<br>51,998    | 25 Mn<br>MAPTAHEU<br>54,938 | 26 Fe 27 Co 805A76T 28 Ni HUKEA6 58,833 |                          | NFEE           |
|              | 5    | 29 Cu<br>медь<br>63,546    | 30 Zn<br>цинк<br>65,37     | Ga 31                         | Ge 32<br>германия<br>72.59 | As 33<br>мышьяк<br>74,922 | Se 34<br>CE/IEH<br>78,96   | Br 35<br>8POM<br>79.904     |                                         | Кг 36<br>криптон<br>83,8 | 22.00          |
| 5            | 6    | Rb 37<br>рубидий<br>85,468 | Sr 38<br>стронций<br>87.62 | 39 Y<br>нттрий<br>88,906      | 40 Zг<br>цирконий<br>91,22 | 41 Nb<br>нновий<br>92,908 | 42 Мо<br>молнеден<br>95.94 | 43 Тс<br>технеций<br>[99]   | 44 Ru 45 Rh РОДИЯ ПАЛЛАДИЯ 100.40       |                          | N-EZO          |
|              | 7    | 47 Ag CEPESPO 107.888      | 48 Cd<br>кадиний<br>112,41 | In 49<br>нидий<br>114,82      | Sn 50<br>08080<br>118,69   | Sb 51<br>CYPEMA<br>121,75 | Те 52<br>теллур<br>127,6   | I 53<br>нод<br>126,905      |                                         | Хе 54<br>ксенон          | 0.520          |

С развитием учения о строении атома был выявлен физический смысл Периодического закона. В настоящее время его формулируют так: свойства химических элементов и образуемых ими простых и сложных веществ находятся в периодической зависимости от величины заряда ядра атомов этих элементов.


Дальнейшие исследования показали, что ядро атома имеет сложное строение. В состав атомного ядра входят такие частицы, как протоны и нейтроны.



Протон (p) — это частица с зарядом +1 и относительной атомной массой, равной 1. Число протонов в ядре равно заряду ядра атома элемента и его порядковому номеру (Z). Например, порядковый номер элемента кислорода равен 8. Значит, число протонов в ядре атома кислорода равно 8 и заряд его ядра равен +8. Порядковый номер элемента хлора — 17. В состав его ядра входят 17 протонов, а заряд его ядра равен +17.

• Заряд протона по абсолютному значению равен заряду электрона (ē). Поэтому любой атом является электронейтральной частицей, так как положительный заряд всех протонов равен отрицательному заряду всех электронов. И число электронов равно числу протонов. В атоме хлора —17 е

## Нейтрон (*n*) — частица с массой, равной 1, но не имеющая заряда.



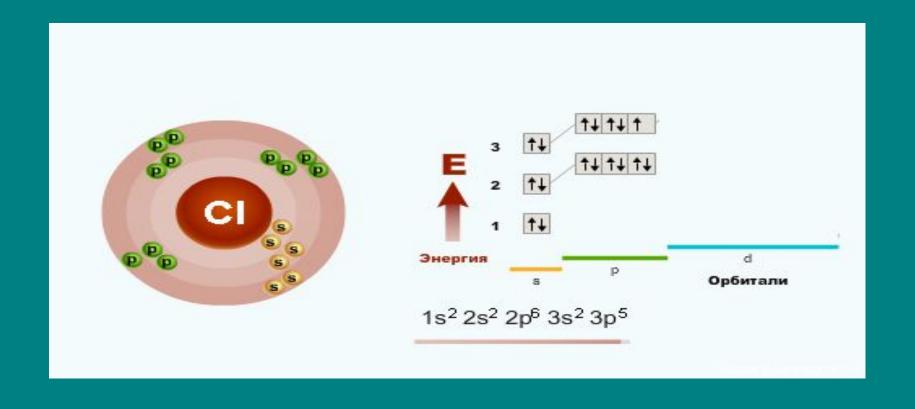


Число протонов и нейтронов в составе различ ных атомов различно. Практически вся масса атома(99,95%) сосредоточена в ядре, находящемся в его центре. Относительная атомная масса элемента численно равна сумме масс протонов и нейтронов:

$$Ar=Z+N$$
,

где Z — сумма масс всех протонов, численно равная порядковому номеру; **N** — сумма масс всех нейтронов, численно равная количеству нейтронов в атоме.

По относительной атомной массе (Ar) и порядковому номеру (Z) можно рассчитать число нейтронов (N) следующим образом:


N= Ar - Z.

Для хлора число нейтронов в ядре его атома равно:

N=35 - 17= 18.

## Кратко состав атомов хлора и кислорода записывается так:

Cl(17p, 18n) 17ē, O (8p, 8n)8ē

