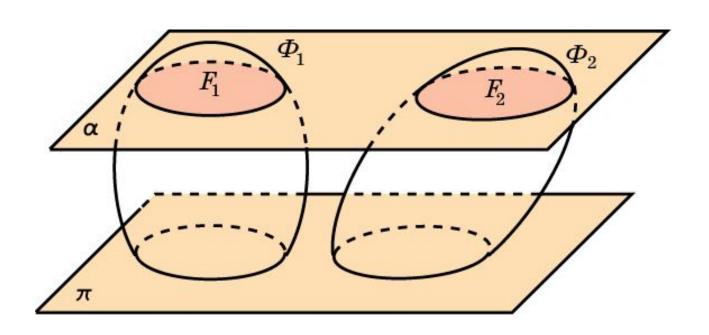
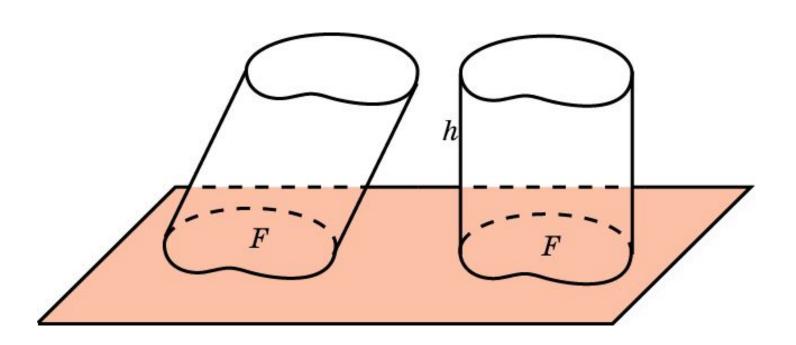
Принцип Кавальери

Принцип Кавальери. Если при пересечении двух фигур Φ_1 и Φ_2 в пространстве плоскостями, параллельными одной и той же плоскости, в сечениях получаются фигуры F_1 и F_2 одинаковой площади, то объемы исходных пространственных фигур равны.



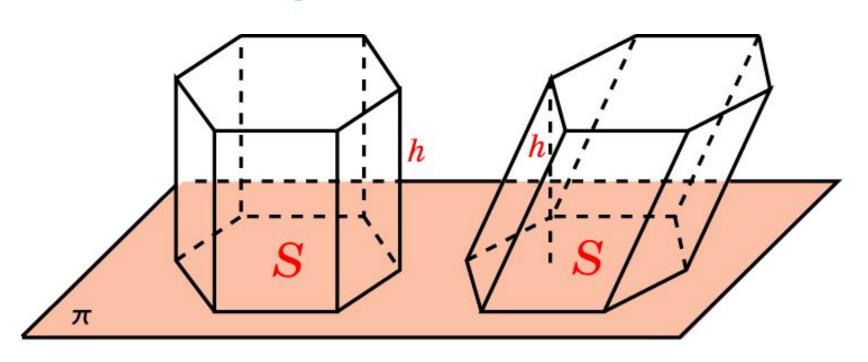
Объем наклонного цилиндра

Теорема. Объем наклонного обобщенного цилиндра равен произведению площади его основания на высоту.



Объем наклонной призмы

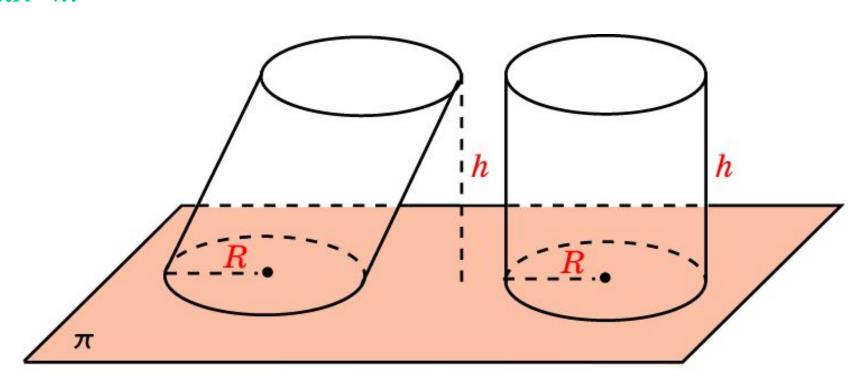
Следствие 1. Объем наклонной призмы с площадью основания S и высотой h вычисляется по формуле $V = S \cdot h$, где S - площадь основания, h - высота призмы.



$$V = S \cdot h$$

Объем наклонного цилиндра

Следствие 2. Объем наклонного кругового цилиндра, высота которого равна h и радиус основания R, вычисляется по формуле $V=\pi R^2 \cdot h$.

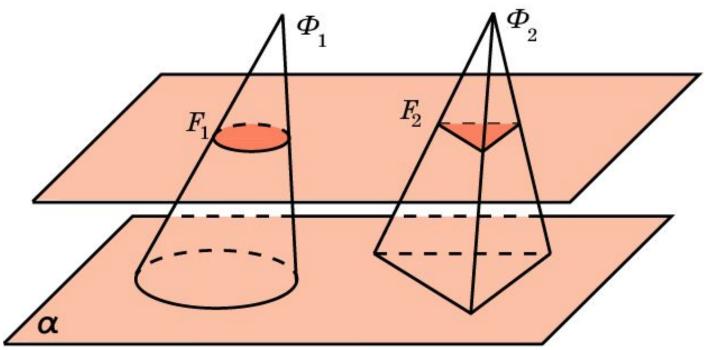


$$V = \pi R^2 \cdot h$$

Обобщенный конус Пусть F - фигура на плоскости π , и S - точка вне этой плоскости. Отрезки, соединяющие точки фигуры F с точкой S, образуют фигуру в пространстве, которую мы будем называть обобщенным конусом. Фигура F называется основанием обобщенного конуса, точка S - вершиной обобщенного конуса. Перпендикуляр, опущенный из вершины конуса на плоскость основания, называется высотой обобщенного конуса.

Частным случаем обобщенного конуса является конус и пирамида.

Теорема. Если два конуса имеют равные высоты и основания равной площади, то их объемы равны.



Верно ли, что две пирамиды, имеющие общее основание и вершины, расположенные в плоскости, параллельной основанию, равновелики?

Верно ли, что любая плоскость, проходящая через центры оснований наклонного кругового цилиндра, делит его на равновеликие части?

В основаниях наклонной призмы квадраты. Верно ли, что любая плоскость, проходящая через центры квадратов, делит призму на две равновеликие части?

Два цилиндра имеют равные высоты, а площадь основания одного в два раза больше площади основания другого. Как относятся их объемы?

Ответ: 2:1.

Верно ли, что любая плоскость, проходящая через вершину и центр основания наклонного кругового конуса, делит его на равновеликие части?

В основании пирамиды квадрат. Верно ли, что любая плоскость, проходящая через вершину пирамиды и центр основания, делит пирамиду на две равновеликие части?

Два конуса имеют равные высоты, а площадь основания одного в три раза больше площади основания другого. Как относятся их объемы?

Ответ: 3:1.

Найдите объем наклонной призмы, площадь основания которой равна S, а боковое ребро b наклонено к плоскости основания под углом ϕ .

Otbet: $V = S \cdot b \cdot \sin \phi$.

Стороны основания параллелепипеда равны 6 дм и 8 дм, угол между ними 45°. Боковое ребро равно 7 дм и наклонено к плоскости основания под углом 45°. Найдите объем параллелепипеда.

Ответ: 168 дм³.

Найдите объем наклонного параллелепипеда, у которого площадь основания равна Q, а боковое ребро, равное b, наклонено к плоскости основания под углом ϕ .

Otbet: $Q \cdot b \cdot \sin \phi$.

Найдите объем наклонного кругового цилиндра, радиус основания которого равен R и образующая b наклонена к плоскости основания под углом ϕ .

Otbet: $\pi \cdot R^2 \cdot b \cdot \sin \phi$.

Основанием наклонного параллелепипеда служит квадрат, сторона которого равна 1 м. Одно из боковых ребер образует с каждой прилежащей стороной основания угол в 60° и равно 2 м. Найдите объем параллелепипеда.

Otbet: $\sqrt{2}$ m³.

Основанием наклонной призмы является равносторонний треугольник со стороной a. Одна из боковых граней перпендикулярна основанию и является ромбом, у которого меньшая диагональ равна d. Найдите объем призмы.

OTBET:
$$\frac{\sqrt{3}}{8} ad \sqrt{4a^2 - d^2}$$

Боковые ребра наклонной треугольной призмы равны 15 см, а расстояния между ними равны 26 см, 25 см и 17 см. Определите объем призмы.

Ответ: 3060 см³.

Даны три параллелепипеда. Проведите плоскость так, чтобы она разделила каждый параллелепипед на две части равного объема.

Ответ: Плоскость, проходящая через центры симметрии параллелепипедов.