Что такое findtheslide.com?

FindTheSlide.com - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация, доклад на тему Площадь многоугольников

Презентация на тему Площадь многоугольников, из раздела: Геометрия. Эта презентация содержит 7 слайда(ов). Информативные слайды и изображения помогут Вам заинтересовать аудиторию. Скачать конспект-презентацию на данную тему можно внизу страницы, поделившись ссылкой с помощью социальных кнопок. Также можно добавить наш сайт презентаций в закладки! Презентации взяты из открытого доступа или загружены их авторами, администрация сайта не отвечает за достоверность информации в них. Все права принадлежат авторам презентаций.

Слайды и текст этой презентации Открыть в PDF

Слайд 1
Текст слайда:

“ПЛОЩАДЬ МНОГОУГОЛЬНИКОВ”

Подготовила Топорищева Катя
8 Класс


Слайд 2
ПЛОЩАДЬ ПРАВИЛЬНОГО МНОГОУГОЛЬНИКА, ФОРМУЛА Для того чтобы вычислить площадь правильного многоугольника его
Текст слайда:

ПЛОЩАДЬ ПРАВИЛЬНОГО МНОГОУГОЛЬНИКА, ФОРМУЛА

Для того чтобы вычислить площадь правильного многоугольника его разбивают на равные треугольники с общей вершиной в центре вписанной окружности. А площадь правильного многоугольника равна произведению его полупериметра радиус вписаной окружности правильного многоугольника



Слайд 3
СОДЕРЖАНИЕ1.Площадь прямоугольника равна произведению его сторон2.Площадь параллелограмма равна произведению его стороны на
Текст слайда:

СОДЕРЖАНИЕ

1.Площадь прямоугольника равна произведению его сторон
2.Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне
3.Площадь треугольника равна половине произведения его стороны на проведенную к ней высоту
3.Площадь трапеции равна произведению полусуммы его оснований на высоту


Слайд 4
ДОКАЗАТЕЛЬСТВО Пусть ABCD и AB1C1D – два прямоугольника с общим основанием ADПусть
Текст слайда:

ДОКАЗАТЕЛЬСТВО

Пусть ABCD и AB1C1D – два прямоугольника с общим основанием AD
Пусть S и – их площади. Докажем, что Разобьем сторону AB прямоугольника на некоторое число n равных частей, каждая из которых равна Пусть m – число точек деления, которые лежат нa стороне AB1. Тогда Отсюда, разделив на AB, получим (*)
Проведем через точки деления прямые, параллельные основанию AD. Они разобьют прямоугольник ABCD на n равных прямоугольников. Каждый из них имеет площадь Прямоугольник содержит первые m прямоугольника, считая от стороны AD, и содержится в m + 1 прямоугольниках. Поэтому Отсюда (**)

Сравнивая неравенства (*) и (**), заключаем, что При этом и – фиксированные числа, а n может быть выбрано сколь угодно большим. Следовательно, неравенство возможно только при Возьмем теперь единичный квадрат, прямоугольник со сторонами 1, a и прямоугольник со сторонами a, b (рис. 13.2.2). Площадь прямоугольника со сторонами 1 и a обозначим Сравнивая их площади, по доказанному будем иметь и Перемножая эти равенства почленно, получим S = a · b. Теорема доказана.
стр 1


Слайд 5
ДОКАЗАТЕЛЬСТВОПусть ABCD – данный параллелограмм. Если он не является прямоугольником, то один
Текст слайда:

ДОКАЗАТЕЛЬСТВО

Пусть ABCD – данный параллелограмм. Если он не является прямоугольником, то один из его углов A или B острый. Пусть для определенности A острый.
Опустим перпендикуляр AE из вершины A на прямую CB. Площадь трапеции AECD равна сумме площадей параллелограмма ABCD и треугольника AEB. Опустим перпендикуляр DF из вершины D на прямую CD. Тогда площадь трапеции AECD равна сумме площадей прямоугольника AEFD и треугольника DFC. Прямоугольные треугольники AEB и DFC равны, а значит, имеют равные площади. Отсюда следует, что площадь параллелограмма ABCD равна площади прямоугольника AEFD, т.е. равна AE · AD. Отрезок AE – высота параллелограмма, соответствующая стороне AD, и, следовательно, S = a · h. Теорема доказана
стр 2


Слайд 6
ДОКАЗАТЕЛЬСТВОПусть ABC – данный треугольник .Дополним его до параллелограмма ABCDПлощадь параллелограмма равна
Текст слайда:

ДОКАЗАТЕЛЬСТВО

Пусть ABC – данный треугольник .Дополним его до параллелограмма ABCD
Площадь параллелограмма равна сумме площадей треугольников ABC и CDA. Так как эти треугольники равны, то площадь параллелограмма равна удвоенной площади треугольника ABC. Высота параллелограмма, соответствующая стороне CB, равна высоте треугольника, проведенной к стороне CB. Отсюда следует утверждение теоремы, и Теорема доказана.
стр 3


Слайд 7
ДОКАЗАТЕЛЬСТВОПусть ABCD – данная трапеция Диагональ AC трапеции разбивает ее на два
Текст слайда:

ДОКАЗАТЕЛЬСТВО

Пусть ABCD – данная трапеция
Диагональ AC трапеции разбивает ее на два треугольника: ABC и CDA. Следовательно, площадь трапеции равна сумме площадей этих треугольников. Площадь треугольника ACD равна площадь треугольника ABC равна Высоты AF и CE этих треугольников равны расстоянию h между параллельными прямыми BC и AD, т.е. высоте трапеции. Следовательно, Теорема доказана.
стр 4