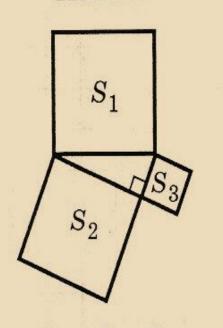


### «Пифагоровы штаны» (доказательство Евклида)

# В течение двух тысячелетий применяли доказательство, придуманное Евклидом, которое помещено в его знаменитых «Началах».

«Пифагоровы штаны»

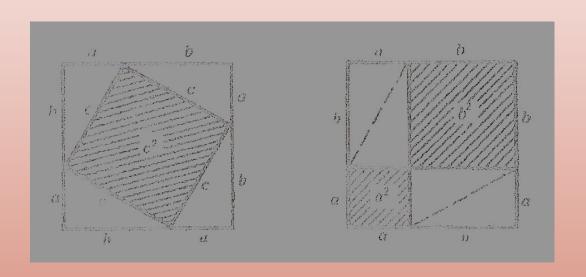


 $S_1 = S_2 + S_3$ 

Исторически возникновение и доказательства теоремы Пифагора связаны с площадями. Зная, что площадь квадрата равна квадрату его стороны, теорему Пифагора можно сформулировать так:

сумма площадей квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на его гипотенузе.

# ДОКАЗАТЕЛЬСТВО, ОСНОВАННОЕ НА ИСПОЛЬЗОВАНИИ ПОНЯТИЯ РАВНОВЕЛИКОСТИ ФИГУР



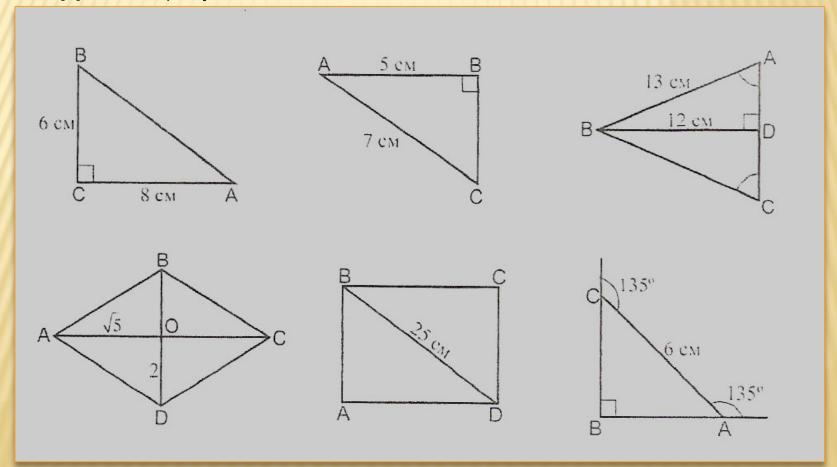
Древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: «Смотри!». Вполне возможно, что такое же доказательство предложил и Пифагор. рисунке изображено два квадрата. Длина сторон каждого квадрата равна a+e. Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверённую площадь прямоугольного треугольника с катетами a, e, e то останутся равные площади, т. е.  $c^2 = a^2 + e^2$ .

### Решение задач по готовым чертежам

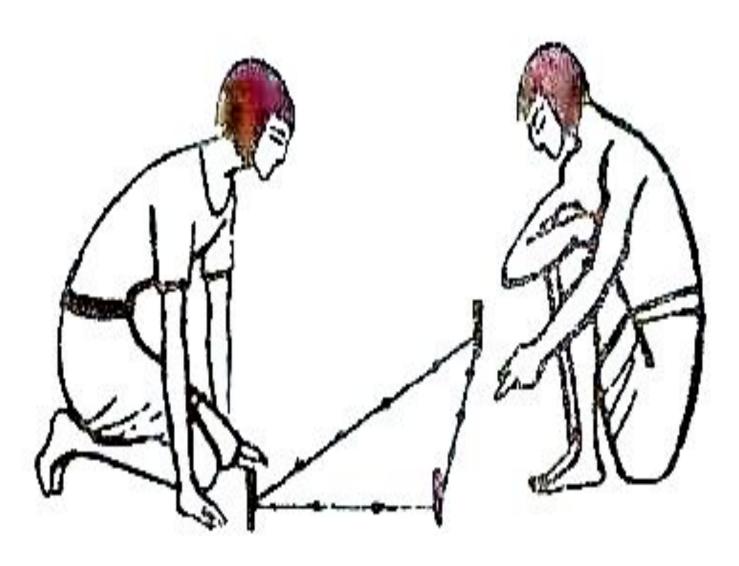
#### Haŭmu:

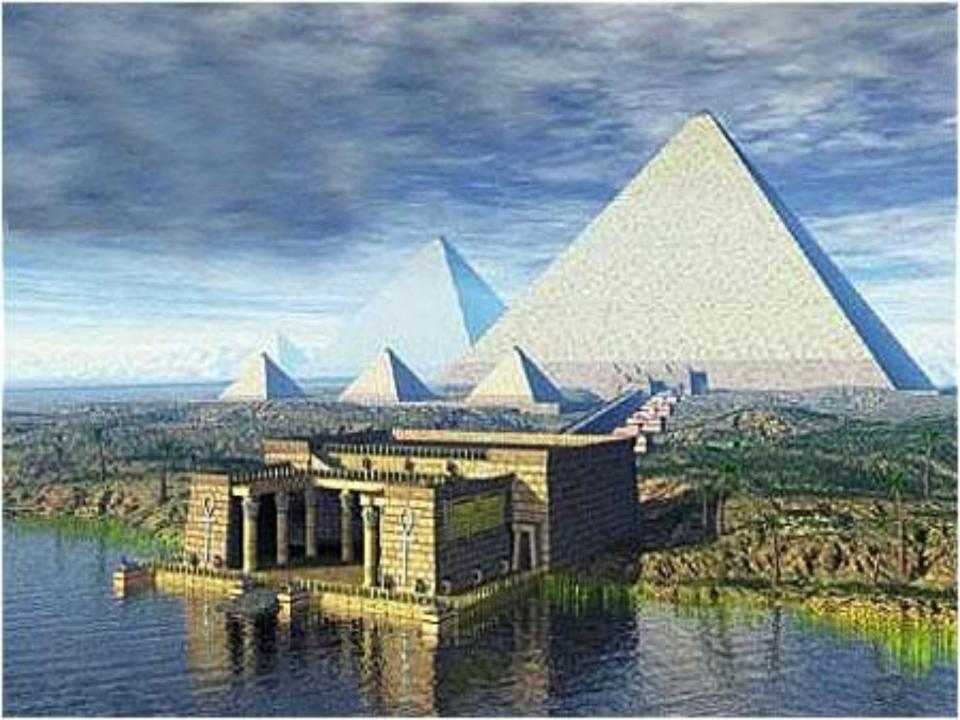
1) АВ; 2) ВС; 3) АС; 4) ВС, если АВСД – ромб; 5) АД, если АВСД – прямоугольник,

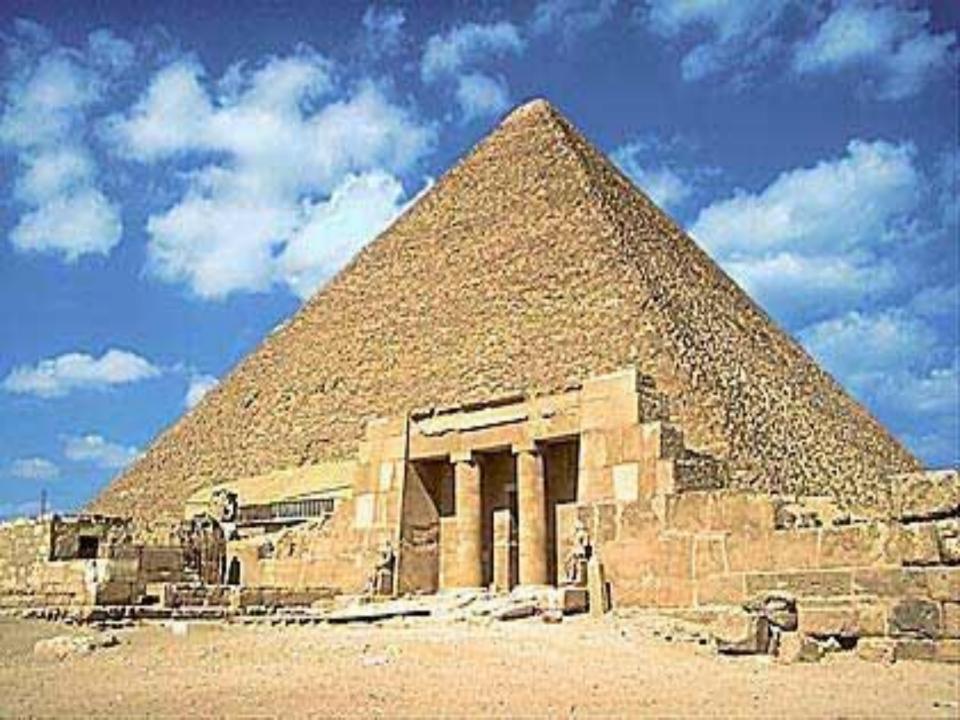
АВ: АД = 3:4; 6) АВ.



# ЕГИПЕТСКИЙ ТРЕУГОПЬНИК











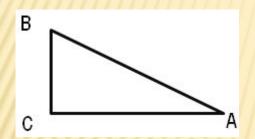


# Некоторые пифагоровы тройки чисел

|   | 1     | 2       | 3        | 4        | 5        | 6        | 7          |
|---|-------|---------|----------|----------|----------|----------|------------|
| 1 | 3,4,5 | 6,8,10  | 8,15,17  | 10,24,26 | 12,35,37 | 14,48,50 | 16,63,65   |
| 2 |       | 5,12,13 | 16,12,20 | 20,21,29 | 24,32,40 | 28,45,53 | 32,60,68,  |
| 3 |       |         | 7,24,25  | 16,30,34 | 27,36,45 | 40,42,58 | 28,96,100  |
| 4 |       |         |          | 9,40,41  | 20,48,52 | 33,56,65 | 48,55,73   |
| 5 |       |         |          |          | 11,60,61 | 24,70,74 | 48,64,80   |
| 6 |       |         |          |          |          | 13,84,85 | 39,80,89   |
| 7 |       |         |          |          |          |          | 15,112,113 |

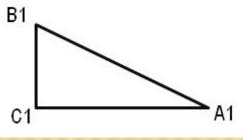
## ΤΕΟΡΕΜΑ ,Ο ΕΡΑΤΗΑ Η ΤΕΟΡΕΜΕ ΠΙΦΑΓΟΡΑ

<u>Теорема.</u> Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.



Дано: ABC 
$$AB^2 = AC^2 + BC^2$$
 Доказать, что  $\angle C = 90$ . Доказательство:

Пусть в треугольнике ABC  $AB^2 = AC^2 + BC^2$ . Докажем, что угол C прямой. Рассмотрим прямоугольный треугольник  $A_1$   $B_1$   $C_1$  C прямым углом  $C_1$ , у которого  $A_1$   $C_1$  = AC и  $B_1$   $C_1$  = AC  $A_1$   $A_2$   $A_3$   $A_4$   $A_4$   $A_5$   $A_5$ 



Но АС $^2$  + ВС $^2$  = АВ $^2$  по условию теоремы. Следовательно,  $A_1B_1^2$  = АВ $^2$ , откуда  $A_1B_1$  = АВ. Треугольники АВС и  $A_1B_1C_1$  равны по трем сторонам, поэтому угол С равен углу  $C_1$ , т. е. треугольник АВС прямоугольный с прямым углом С. Теорема доказана

# ЗАДАНИЯ:

- 1)В прямоугольном треугольнике катеты равны 1,5 и 2. Найдите гипотенузу.
- 2) В прямоугольном треугольнике гипотенуза и катет соответственно равны 13 и 5. Найдите второй катет.
- 3) Определите вид треугольника, стороны которого равны 3, 4 и 5.

## РЕФЛЕКСИЯ УРОКА

- Что нового узнали на уроке?
- Какие задания понравились?
- Какие задания вызвали затруднения?