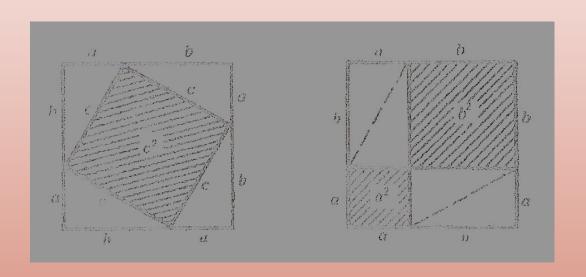


«Пифагоровы штаны» (доказательство Евклида)

В течение двух тысячелетий применяли доказательство, придуманное Евклидом, которое помещено в его знаменитых «Началах».

«Пифагоровы штаны»

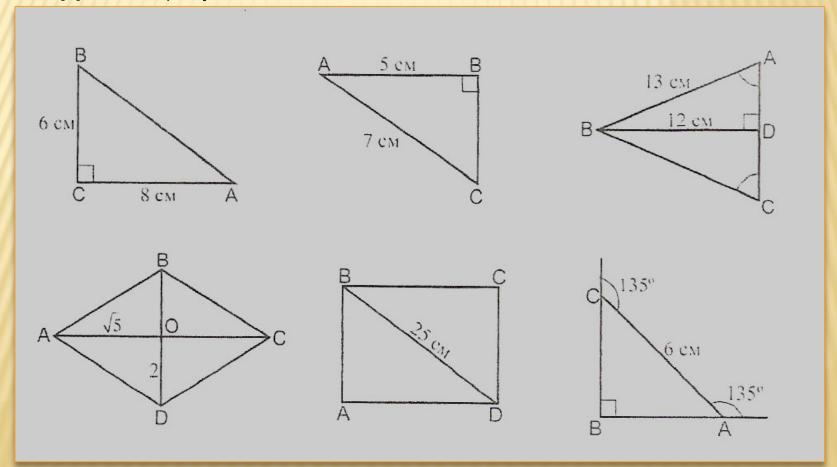


 $S_1 = S_2 + S_3$

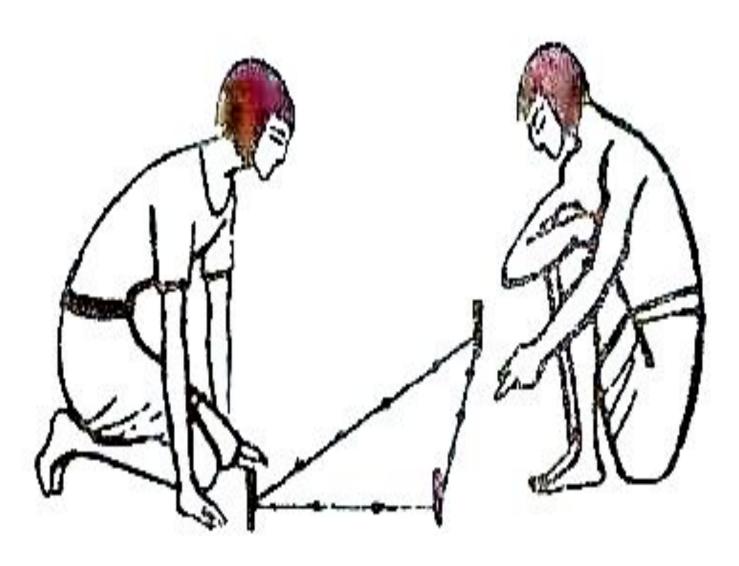
Исторически возникновение и доказательства теоремы Пифагора связаны с площадями. Зная, что площадь квадрата равна квадрату его стороны, теорему Пифагора можно сформулировать так:

сумма площадей квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на его гипотенузе.

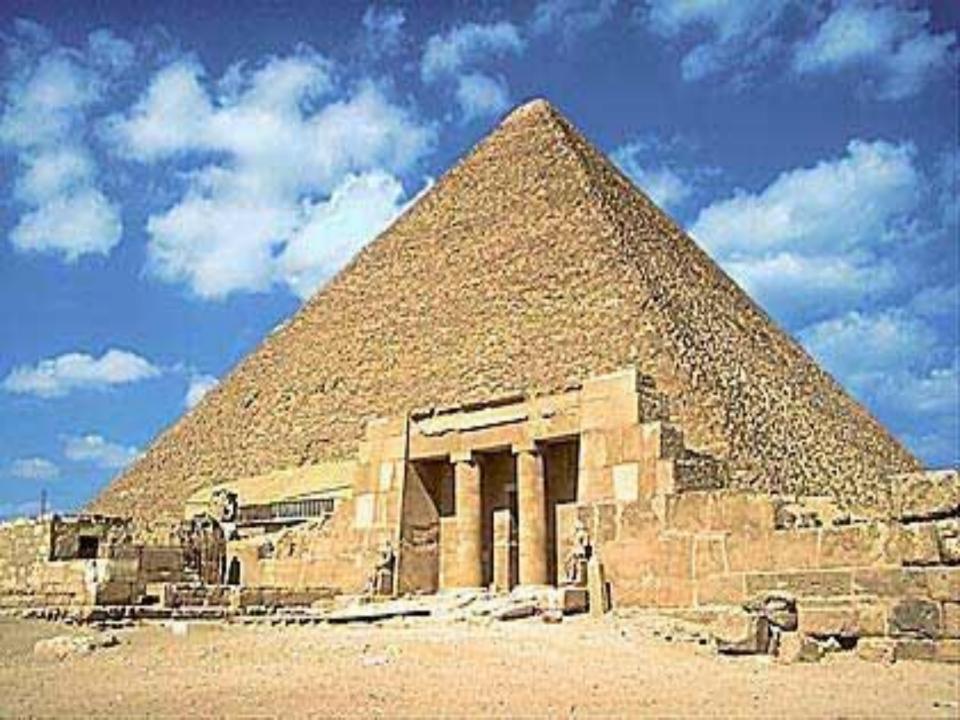
ДОКАЗАТЕЛЬСТВО, ОСНОВАННОЕ НА ИСПОЛЬЗОВАНИИ ПОНЯТИЯ РАВНОВЕЛИКОСТИ ФИГУР


Древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: «Смотри!». Вполне возможно, что такое же доказательство предложил и Пифагор. рисунке изображено два квадрата. Длина сторон каждого квадрата равна a+e. Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверённую площадь прямоугольного треугольника с катетами a, e, e то останутся равные площади, т. е. $c^2 = a^2 + e^2$.

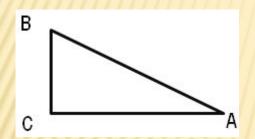
Решение задач по готовым чертежам


Haŭmu:

1) АВ; 2) ВС; 3) АС; 4) ВС, если АВСД – ромб; 5) АД, если АВСД – прямоугольник,

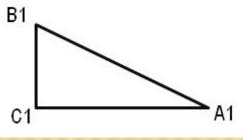

АВ: АД = 3:4; 6) АВ.

ЕГИПЕТСКИЙ ТРЕУГОПЬНИК



Некоторые пифагоровы тройки чисел

	1	2	3	4	5	6	7
1	3,4,5	6,8,10	8,15,17	10,24,26	12,35,37	14,48,50	16,63,65
2		5,12,13	16,12,20	20,21,29	24,32,40	28,45,53	32,60,68,
3			7,24,25	16,30,34	27,36,45	40,42,58	28,96,100
4				9,40,41	20,48,52	33,56,65	48,55,73
5					11,60,61	24,70,74	48,64,80
6						13,84,85	39,80,89
7							15,112,113


ΤΕΟΡΕΜΑ ,Ο ΕΡΑΤΗΑ Η ΤΕΟΡΕΜΕ ΠΙΦΑΓΟΡΑ

<u>Теорема.</u> Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.

Дано: ABC
$$AB^2 = AC^2 + BC^2$$
 Доказать, что $\angle C = 90$. Доказательство:

Пусть в треугольнике ABC $AB^2 = AC^2 + BC^2$. Докажем, что угол C прямой. Рассмотрим прямоугольный треугольник A_1 B_1 C_1 C прямым углом C_1 , у которого A_1 C_1 = AC и B_1 C_1 = AC A_1 A_2 A_3 A_4 A_4 A_5 A_5

Но АС 2 + ВС 2 = АВ 2 по условию теоремы. Следовательно, $A_1B_1^2$ = АВ 2 , откуда A_1B_1 = АВ. Треугольники АВС и $A_1B_1C_1$ равны по трем сторонам, поэтому угол С равен углу C_1 , т. е. треугольник АВС прямоугольный с прямым углом С. Теорема доказана

ЗАДАНИЯ:

- 1)В прямоугольном треугольнике катеты равны 1,5 и 2. Найдите гипотенузу.
- 2) В прямоугольном треугольнике гипотенуза и катет соответственно равны 13 и 5. Найдите второй катет.
- 3) Определите вид треугольника, стороны которого равны 3, 4 и 5.

РЕФЛЕКСИЯ УРОКА

- Что нового узнали на уроке?
- Какие задания понравились?
- Какие задания вызвали затруднения?