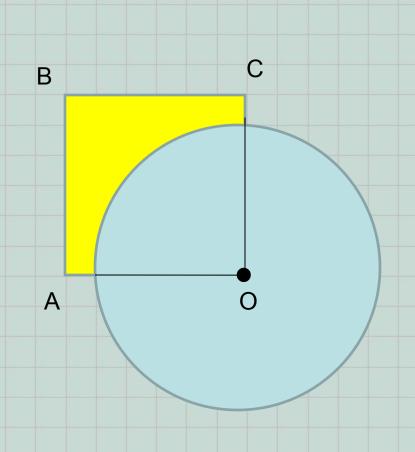
Даны квадрат ОАВС, сторона которого равна 6 см и окружность с центром в точке О и радиусом 5 см.

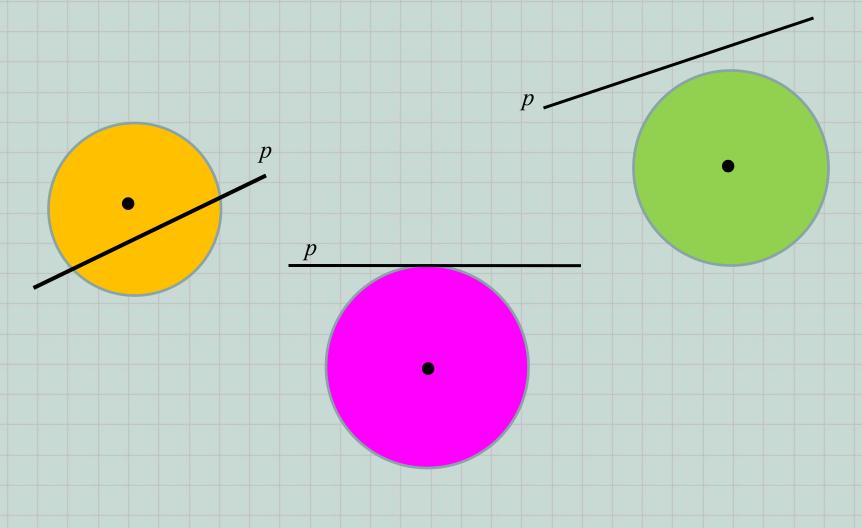
Какие из прямых ОА, АВ, ВС и АС являются секущими по отношению к это окружности?



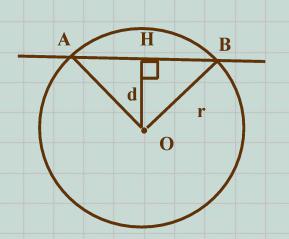
Касательная к окружности

Учебная презентация по геометрии для 8 класса

Три случая взаимного расположения на плоскости прямой и окружности

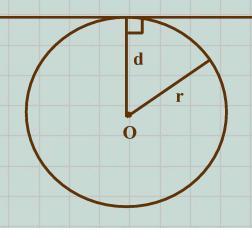


Сколько общих точек могут иметь прямая и окружность?



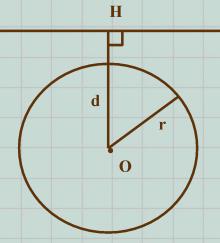
d < r

две общие точки



d = r

одна общая точка



d > r

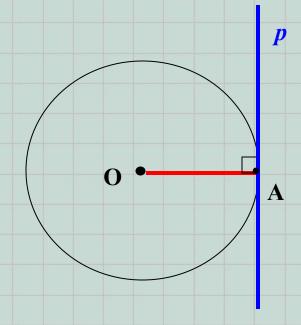
не имеют общих точек

Определение

Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания

p – касательная

А – точка касания



Теорема

(свойство касательной)

Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания.

Дано: р - касательная;

Окружность (О; r);

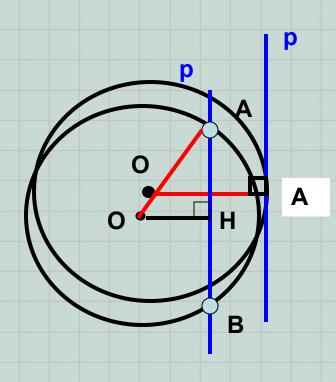
А – точка касания.

<u>Доказать</u>: р ОА.

Доказательство:

Предположим, что это не так. То есть ОА будет наклонной. Но любая наклонная, проведенная из той же точки, что и перпендикуляр, будет больше перпендикуляра.

OH < OA, то OH < r. => $\mathbf{d} < \mathbf{r}$ Значит, прямая р и окружность имеют две общие точки, что неверно => р \perp OA.



Обратная теорема

(признак касательной)

Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.

Дано: окружность (О; г);

луч р, перпендикуляр ОА.

Доказать: р – касательная.

Доказательство:

$$r = OA; r = d$$

только 1 общая точка.

р – касательная.



Свойство отрезков касательных, проведенных из одной точки

Отрезки касательных к окружности, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Дано: окружность, АВ и АС – касательные;

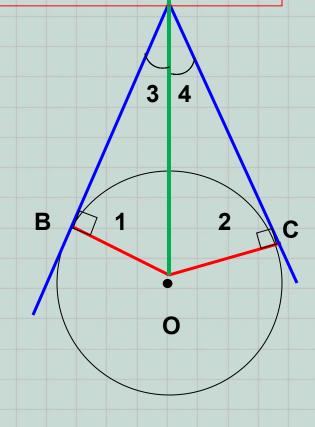
В и С – точки касания.

Доказать: AB = AC; / 3 = /4.

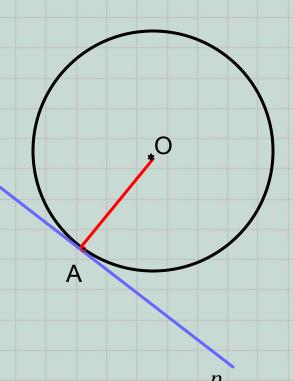
Доказательство: $\angle 1 = \angle 2 = 90^{\circ}$;

 Δ ABO = Δ ACO (OA – общая; OB = OC = r).

$$AB = AC$$
 и $\angle 3 = \angle 4$.



Задача на построение касательной к окружности



Дано: окружность с центром в точке О. Построить: касательную к окружности через точку А, лежащую на окружности.

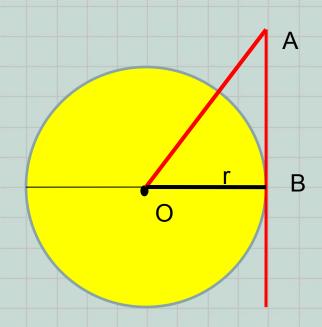
Построение:

- 1. Провести радиус окружности ОА
- **2**. Провести прямую p, проходящую через точку А и перпендикулярную ОА

Ответ: *p* – искомая касательная

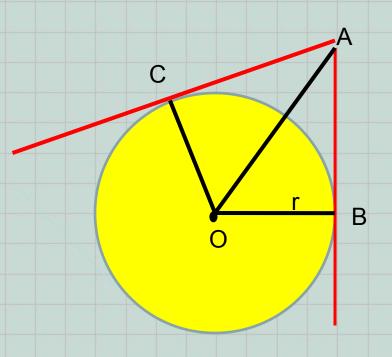
Прямая АВ касается окружности с центром в точке О радиуса г в точке В.

Найдите AB, если OA = 2 см, а радиус окружности r = 1,5 см



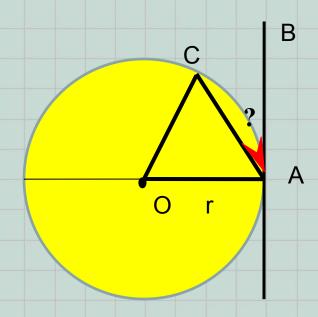
Даны окружность с центром О и радиусом 4,5 см и точка А. Через точку А проведены две касательные к окружности.

Найдите угол между ними, если OA= 9 см.



Прямая АВ касается окружности с центром в точке О радиуса г в точке В.

Найдите AB, если OA = 2 см, а радиус окружности r = 1,5 см

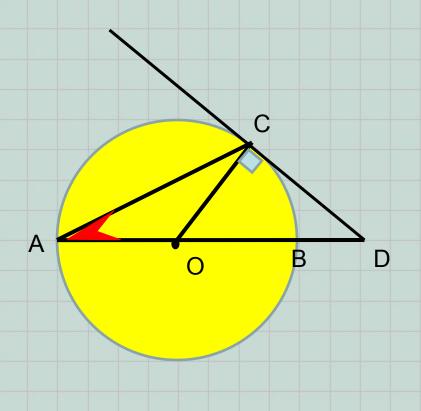


Угол между диаметром АВ и хордой АС равен 30°. Через точку С проведена касательная, пересекающая прямую АВ в точке D. Докажите, что треугольник АСD равнобедренный.

Доказательство:

 Δ AOC = равнобедренный, его боковые стороны равны радиусу окружности, тогда < ACO = 30 $^{\circ}$.

< COD — внешний по отношению к Δ AOC, значит он равен сумме двух внутренних углов этого треугольника, не смежного с ним, т.е. < COD = $30^{\circ} + 30^{\circ} = 60^{\circ}$



< OCD — прямой, тогда < CDO = 30° . Получаем, в Δ ACD два равных угла (< CAD = < CDA = 30°). Значит он — равнобедренный, Ч. Т. Д.

Домашнее задание

- Читать пункт 69;
- Отвечать на вопросы 3-7;
- Решить № 634, 636, 639.